Photo AI

3.1 Vereenvoudig die volgende SONDERS om 'n sakrekenaar te gebruik: 3.1.1 $log 3 + log 27$ $log 81 - log 9$ 3.1.2 \[ \frac{2^{\sqrt{32}} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} \] 3.2 Los op vir $x$: $log_{32} + log 4 - log_{16} = log_{125}$ 3.3 Twee wisselstroombane, wat in serie verbind is, het impedansies $Z_1 = 4 + 5i$ en $Z_2 = 4 - 4i$ - NSC Technical Mathematics - Question 3 - 2020 - Paper 1

Question icon

Question 3

3.1-Vereenvoudig-die-volgende-SONDERS-om-'n-sakrekenaar-te-gebruik:--3.1.1-$log-3-+-log-27$--$log-81---log-9$--3.1.2-\[-\frac{2^{\sqrt{32}}-+-2^{\sqrt{2}}}{2^{\sqrt{50}}}-\]--3.2-Los-op-vir-$x$:-$log_{32}-+-log-4---log_{16}-=-log_{125}$--3.3-Twee-wisselstroombane,-wat-in-serie-verbind-is,-het-impedansies-$Z_1-=-4-+-5i$-en-$Z_2-=-4---4i$-NSC Technical Mathematics-Question 3-2020-Paper 1.png

3.1 Vereenvoudig die volgende SONDERS om 'n sakrekenaar te gebruik: 3.1.1 $log 3 + log 27$ $log 81 - log 9$ 3.1.2 \[ \frac{2^{\sqrt{32}} + 2^{\sqrt{2}}}{2^{\sqrt{... show full transcript

Worked Solution & Example Answer:3.1 Vereenvoudig die volgende SONDERS om 'n sakrekenaar te gebruik: 3.1.1 $log 3 + log 27$ $log 81 - log 9$ 3.1.2 \[ \frac{2^{\sqrt{32}} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} \] 3.2 Los op vir $x$: $log_{32} + log 4 - log_{16} = log_{125}$ 3.3 Twee wisselstroombane, wat in serie verbind is, het impedansies $Z_1 = 4 + 5i$ en $Z_2 = 4 - 4i$ - NSC Technical Mathematics - Question 3 - 2020 - Paper 1

Step 1

3.1.1 $log 3 + log 27$

96%

114 rated

Answer

Using the property of logarithms: loga+logb=log(ab)log a + log b = log(ab) we have: log3+log27=log(327)=log81log 3 + log 27 = log(3 \cdot 27) = log 81

For the second part: Using the property of logarithms: logalogb=log(ab)log a - log b = log(\frac{a}{b}) we have: log81log9=log(819)=log9=2log 81 - log 9 = log(\frac{81}{9}) = log 9 = 2

Step 2

3.1.2

99%

104 rated

Answer

We simplify the expression: [ \frac{2^{\sqrt{32}} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} = \frac{2^{2 \cdot 4} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} = \frac{2^{4} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} = 1]

Step 3

3.2 Los op vir $x$: $log_{32} + log 4 - log_{16} = log_{125}$

96%

101 rated

Answer

Using logarithm properties: log32(25)+log(22)log(24)=log(125)log_{32}(2^5) + log(2^2) - log(2^4) = log(125) This can further be simplified using change of base: log(32)+log(4)log(16)log(2)=log(125)\frac{log(32) + log(4) - log(16)}{log(2)} = log(125) After simplification, we find that x=2x = 2.

Step 4

3.3.1 Bereken die totale impedansie $Z_T$

98%

120 rated

Answer

To find the total impedance: ZT=Z1+Z2=(4+5i)+(44i)=8+iZ_T = Z_1 + Z_2 = (4 + 5i) + (4 - 4i) = 8 + i

Step 5

3.3.2 Druk vervolgens die totale impedansie in die vorm $Z_T = r(cos θ + isin θ)$

97%

117 rated

Answer

To express the total impedance in polar form, we calculate the modulus: r=ZT=82+12=64+1=65r = |Z_T| = \sqrt{8^2 + 1^2} = \sqrt{64 + 1} = \sqrt{65}

Next, we find the angle: θ=tan1(18)\theta = tan^{-1}\left(\frac{1}{8}\right)

Finally, we express it as: ZT=r(cosθ+isinθ)Z_T = r(cos \theta + i sin \theta)

Step 6

3.4 Los op vir $k$ en indien $k = 6 + 4(i - 9) + 2mi$.

97%

121 rated

Answer

First, simplify the expression: k=6+4(i9)+2mi=6+4i36+2mi=30+(4+2m)ik = 6 + 4(i - 9) + 2mi = 6 + 4i - 36 + 2mi = -30 + (4 + 2m)i Setting the real part and imaginary part: Real part: 30-30 Imaginary part: 4+2m4 + 2m

This leads us to the final values for kk.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;