Photo AI

3.1 Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $\log_a a^{1} $ 3.1.2 $ \sqrt{5x \left( \sqrt{45x + 2 + \sqrt{80x}} \right)} $ 3.1.3 $ \left( \frac{4^{x-2}}{2^{2x-3} - 8^{3}} \right) \times 8 $ 3.2 Los op vir $x$: $\log(2x - 5) + \log 2 = 1 $ 3.3 Gegee die komplekse getal: $z = 2 + 2i $ 3.3.1 In watter kwadrant van die komplekse vlak lê $z$? 3.3.2 Bepaal die waarde van die modulus van $z$ - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Question icon

Question 3

3.1-Vereenvoudig-die-volgende-sonder-om-'n-sakrekenaar-te-gebruik:--3.1.1--$\log_a-a^{1}-$--3.1.2--$-\sqrt{5x-\left(-\sqrt{45x-+-2-+-\sqrt{80x}}-\right)}-$--3.1.3--$-\left(-\frac{4^{x-2}}{2^{2x-3}---8^{3}}-\right)-\times-8-$--3.2-Los-op-vir-$x$:-$\log(2x---5)-+-\log-2-=-1-$--3.3-Gegee-die-komplekse-getal:-$z-=-2-+-2i-$--3.3.1-In-watter-kwadrant-van-die-komplekse-vlak-lê-$z$?--3.3.2-Bepaal-die-waarde-van-die-modulus-van-$z$-NSC Technical Mathematics-Question 3-2023-Paper 1.png

3.1 Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $\log_a a^{1} $ 3.1.2 $ \sqrt{5x \left( \sqrt{45x + 2 + \sqrt{80x}} \right)} $ 3.1.3 $... show full transcript

Worked Solution & Example Answer:3.1 Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $\log_a a^{1} $ 3.1.2 $ \sqrt{5x \left( \sqrt{45x + 2 + \sqrt{80x}} \right)} $ 3.1.3 $ \left( \frac{4^{x-2}}{2^{2x-3} - 8^{3}} \right) \times 8 $ 3.2 Los op vir $x$: $\log(2x - 5) + \log 2 = 1 $ 3.3 Gegee die komplekse getal: $z = 2 + 2i $ 3.3.1 In watter kwadrant van die komplekse vlak lê $z$? 3.3.2 Bepaal die waarde van die modulus van $z$ - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Step 1

3.1.1 $\log_a a^{1} $

96%

114 rated

Answer

Using the property of logarithms, we know that:

logaan=n\log_a a^{n} = n

Thus:

logaa1=1\log_a a^{1} = 1

Step 2

3.1.2 $ \sqrt{5x \left( \sqrt{45x + 2 + \sqrt{80x}} \right)} $

99%

104 rated

Answer

Start by simplifying the expression inside the square root:

First, compute 80x\sqrt{80x}:

80x=165x=45x \sqrt{80x} = \sqrt{16 \cdot 5x} = 4\sqrt{5x}

Now substitute this back into the expression:

5x(45x+2+45x)\sqrt{5x (\sqrt{45x + 2 + 4\sqrt{5x}})}

This can be simplified as:

=5x(5(9x+0.4+4x))= \sqrt{5x (\sqrt{5(9x + 0.4 + 4\sqrt{x})})}

Further simplification leads us to:

=45x+2+45x= \sqrt{45x + 2 + 4\sqrt{5x}}

Step 3

3.1.3 $\left( \frac{4^{x-2}}{2^{2x-3} - 8^{3}} \right) \times 8 $

96%

101 rated

Answer

First, rewrite 88 as 232^3:

=(4x222x323)×23= \left( \frac{4^{x-2}}{2^{2x-3} - 2^{3}} \right) \times 2^3

Now apply the power rule:

4x2=(22)x2=22(x2)=22x44^{x-2} = (2^2)^{x-2} = 2^{2(x-2)} = 2^{2x-4}

Substituting back,

=22x422x323×23= \frac{2^{2x-4}}{2^{2x-3} - 2^{3}} \times 2^{3}

This leads us to simplify the expression.

Step 4

3.2 Los op vir $x$: $\log(2x - 5) + \log 2 = 1 $

98%

120 rated

Answer

Combine the logarithmic terms:

log(2x5)+log(2)=log(2(2x5)) (using product property)\log(2x - 5) + \log(2) = \log(2(2x - 5))\text{ (using product property)}

Setting it equal to 1:

log(2(2x5))=1\log(2(2x - 5)) = 1

Converting to exponential form gives:

2(2x5)=102(2x - 5) = 10

Solving for xx:

2x5=5    2x=10    x=52x - 5 = 5\implies 2x = 10\implies x = 5

Step 5

3.3.1 In watter kwadrant van die komplekse vlak lê $z$?

97%

117 rated

Answer

The complex number z=2+2iz = 2 + 2i lies in the first quadrant because both its real part (2) and its imaginary part (2) are positive.

Step 6

3.3.2 Bepaal die waarde van die modulus van $z$.

97%

121 rated

Answer

The modulus of a complex number z=a+biz = a + bi is given by:

z=a2+b2|z| = \sqrt{a^2 + b^2}

For z=2+2iz = 2 + 2i:

z=22+22=4+4=8=22|z| = \sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}

Step 7

3.3.3 Druk vervolgens $z$ in poleêre vorm uit (gege die hoek in grade).

96%

114 rated

Answer

To express zz in polar form, we need the modulus and the argument (angle). The argument is given by:

θ=tan1(ba)\theta = \tan^{-1}\left(\frac{b}{a}\right)

For z=2+2iz = 2 + 2i:

θ=tan1(22)=tan1(1)=45\theta = \tan^{-1}\left(\frac{2}{2}\right) = \tan^{-1}(1) = 45^{\circ}

Thus, in polar form:

z=z(cos(θ)+isin(θ))=22(cos(45)+isin(45))z = |z| (\cos(\theta) + i\sin(\theta)) = 2\sqrt{2} \left(\cos(45^{\circ}) + i\sin(45^{\circ})\right)

Step 8

3.4 Los op vir $x$ en $y$ indien $x - 3y = 6 + 9i$.

99%

104 rated

Answer

To solve for xx and yy, separate the equation into real and imaginary parts:

x3y=6+9ix - 3y = 6 + 9i

Thus,

Real part: x3y=6x - 3y = 6

Imaginary part: 0=90 = 9 (not applicable if treated correctly)

From the first equation:

x=6+3yx = 6 + 3y

Therefore, without a second equation available in this context, we can express xx in terms of yy.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;