Photo AI

In die diagram hieronder is O die middelpunt van sirkel DCB - NSC Technical Mathematics - Question 7 - 2023 - Paper 2

Question icon

Question 7

In-die-diagram-hieronder-is-O-die-middelpunt-van-sirkel-DCB-NSC Technical Mathematics-Question 7-2023-Paper 2.png

In die diagram hieronder is O die middelpunt van sirkel DCB. Koord BD word verleng om CF by F te sny zodat \( \hat{F} = 27^{\circ} \) \( \hat{O_1} = 4\hat{F} \) 7.... show full transcript

Worked Solution & Example Answer:In die diagram hieronder is O die middelpunt van sirkel DCB - NSC Technical Mathematics - Question 7 - 2023 - Paper 2

Step 1

Skryf die grootte van \( \hat{O_1} \) neer.

96%

114 rated

Answer

Die grootte van ( \hat{O_1} ) is:

[ \hat{O_1} = 4 \times \hat{F} = 4 \times 27^{\circ} = 108^{\circ} ]

Step 2

Bepaal, met 'n rede, die grootte van \( \hat{D_i} \).

99%

104 rated

Answer

Om die grootte van ( \hat{D_i} ) te bepaal, let op dat die hoek ( \hat{D_i} ) die sentrale hoek is van die sirkel. Die randhoek is die helft van die sentrale hoek. Dus:

[ \hat{D_i} = \frac{1}{2} \times (2 \times 27^{\circ}) = 54^{\circ} ]

Step 3

Bewys vervolgens dat DC = DF.

96%

101 rated

Answer

In driehoek CDF het ons die volgende:

  • ( \hat{D_i} = 54^{\circ} ) (bereken in vorige stap)
  • ( \hat{F} = 27^{\circ} )

Die derde hoek in die driehoek, ( \hat{C} ), kan bereken word:

[ \hat{C} = 180^{\circ} - \hat{D_i} - \hat{F} = 180^{\circ} - 54^{\circ} - 27^{\circ} = 99^{\circ} ]

Aangesien ( \hat{D_i} = \hat{F} ) en die hoeke teenoor gelyke sye staan, is DC = DF volgens die hoeke-sy-sy (HSS) bewys.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;