Photo AI

Die diagram hieronder toon plaasgrond in die formaat van 'n koordevierehoek PQRS - NSC Technical Mathematics - Question 6 - 2021 - Paper 1

Question icon

Question 6

Die-diagram-hieronder-toon-plaasgrond-in-die-formaat-van-'n-koordevierehoek-PQRS-NSC Technical Mathematics-Question 6-2021-Paper 1.png

Die diagram hieronder toon plaasgrond in die formaat van 'n koordevierehoek PQRS. Die grond het die volgende afmetings: PQ = 1200 m QR = 750 m ∠Q = 60° ∠R1 = 40,5° P... show full transcript

Worked Solution & Example Answer:Die diagram hieronder toon plaasgrond in die formaat van 'n koordevierehoek PQRS - NSC Technical Mathematics - Question 6 - 2021 - Paper 1

Step 1

6.1 Die lengte van PR

96%

114 rated

Answer

To find the length of PR, we apply the cosine rule:

PR2=QR2+PQ22QRimesPQimesextcos(Q)PR^2 = QR^2 + PQ^2 - 2QR imes PQ imes ext{cos}(Q) Substituting the known values:

PR2=(750)2+(1200)22(750)(1200)imesextcos(60°)PR^2 = (750)^2 + (1200)^2 - 2(750)(1200) imes ext{cos}(60°)

Calculating this, we get:

PR2=102500PR^2 = 102500

Thus, taking the square root:

PR \\approx 1 050 \, ext{m} $$

Step 2

6.2 Die grootte van ∠S

99%

104 rated

Answer

To find the size of angle ∠S, we utilize the sine rule:

PQsinS=QRsinQ\frac{PQ}{\sin S} = \frac{QR}{\sin Q} Given that:

  • PQ = 1200 m
  • QR = 750 m
  • ∠Q = 60°

Rearranging for ∠S:

sinS=PQ×sinQQR=1200×sin(60°)750\sin S = \frac{PQ \times \sin Q}{QR} = \frac{1200 \times \sin(60°)}{750}

Calculating this gives:

S120°S \approx 120°

Step 3

6.3 Die lengte van PS

96%

101 rated

Answer

Again applying the sine rule:

PSsinR1=PRsinS\frac{PS}{\sin R1} = \frac{PR}{\sin S} We have:

  • PR = 1 050 m
  • ∠S = 120°
  • ∠R1 = 40.5°

Rearranging:

PS=PR×sinR1sinSPS = \frac{PR \times \sin R1}{\sin S} Substituting the values:

PS=1050×sin(40.5°)sin(120°)PS = \frac{1050 \times \sin(40.5°)}{\sin(120°)}

This results in:

PS787.41extmPS \approx 787.41 \, ext{m}

Step 4

6.4 Die oppervlakte van ΔQPR

98%

120 rated

Answer

To compute the area of triangle ΔQPR:

extArea=12×QR×PR×sinQ\, ext{Area} = \frac{1}{2} \times QR \times PR \times \sin Q Substituting the known values:

=12×(750)×(1200)×sin(60°)= \frac{1}{2} \times (750) \times (1200) \times \sin(60°)

Calculating the area gives approximately:

Area389711.43extm2\text{Area} \approx 389711.43 \, ext{m}^2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;