Die diagram hieronder toon plaasgrond in die formaat van 'n koordevierehoek PQRS - NSC Technical Mathematics - Question 6 - 2021 - Paper 1
Question 6
Die diagram hieronder toon plaasgrond in die formaat van 'n koordevierehoek PQRS.
Die grond het die volgende afmetings:
PQ = 1200 m
QR = 750 m
∠Q = 60°
∠R1 = 40,5°
P... show full transcript
Worked Solution & Example Answer:Die diagram hieronder toon plaasgrond in die formaat van 'n koordevierehoek PQRS - NSC Technical Mathematics - Question 6 - 2021 - Paper 1
Step 1
6.1 Die lengte van PR
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the length of PR, we apply the cosine rule:
PR2=QR2+PQ2−2QRimesPQimesextcos(Q)
Substituting the known values:
PR2=(750)2+(1200)2−2(750)(1200)imesextcos(60°)
Calculating this, we get:
PR2=102500
Thus, taking the square root:
PR \\approx 1 050 \, ext{m} $$
Step 2
6.2 Die grootte van ∠S
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the size of angle ∠S, we utilize the sine rule:
sinSPQ=sinQQR
Given that:
PQ = 1200 m
QR = 750 m
∠Q = 60°
Rearranging for ∠S:
sinS=QRPQ×sinQ=7501200×sin(60°)
Calculating this gives:
S≈120°
Step 3
6.3 Die lengte van PS
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Again applying the sine rule:
sinR1PS=sinSPR
We have:
PR = 1 050 m
∠S = 120°
∠R1 = 40.5°
Rearranging:
PS=sinSPR×sinR1
Substituting the values:
PS=sin(120°)1050×sin(40.5°)
This results in:
PS≈787.41extm
Step 4
6.4 Die oppervlakte van ΔQPR
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To compute the area of triangle ΔQPR:
extArea=21×QR×PR×sinQ
Substituting the known values: