Photo AI

6.1 Determine $f' (x)$ using FIRST PRINCIPLES if $f (x) = \frac{1}{2} x$ - NSC Technical Mathematics - Question 6 - 2020 - Paper 1

Question icon

Question 6

6.1-Determine-$f'-(x)$-using-FIRST-PRINCIPLES-if-$f-(x)-=-\frac{1}{2}-x$-NSC Technical Mathematics-Question 6-2020-Paper 1.png

6.1 Determine $f' (x)$ using FIRST PRINCIPLES if $f (x) = \frac{1}{2} x$. 6.2 Determine EACH of the following: 6.2.1 \( \frac{dA}{dr} \) if \( A = \pi r^2 \) 6.2.... show full transcript

Worked Solution & Example Answer:6.1 Determine $f' (x)$ using FIRST PRINCIPLES if $f (x) = \frac{1}{2} x$ - NSC Technical Mathematics - Question 6 - 2020 - Paper 1

Step 1

Determine $f' (x)$ using FIRST PRINCIPLES

96%

114 rated

Answer

To find the derivative of the function using first principles, we apply the definition of the derivative:

f(x)=limh0f(x+h)f(x)hf' (x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

Substituting for f(x)=12xf(x) = \frac{1}{2}x:

f(x)=limh012(x+h)12xhf' (x) = \lim_{h \to 0} \frac{\frac{1}{2}(x+h) - \frac{1}{2}x}{h}

This simplifies to:

=limh012hh=limh012=12= \lim_{h \to 0} \frac{\frac{1}{2}h}{h} = \lim_{h \to 0} \frac{1}{2} = \frac{1}{2}

Thus, ( f' (x) = \frac{1}{2} ).

Step 2

Determine $\frac{dA}{dr}$ if $A = \pi r^2$

99%

104 rated

Answer

To compute the derivative of area AA with respect to radius rr, we use:

dAdr=ddr(πr2)=2πr.\frac{dA}{dr} = \frac{d}{dr}(\pi r^2) = 2\pi r.

Step 3

Determine $D_x \left( [x - \sqrt{x}]^2\right)$

96%

101 rated

Answer

To find the derivative Dx[(xx)2]D_x [ (x - \sqrt{x})^2 ], we will use the chain rule:

Let u=xxu = x - \sqrt{x}, then:

Dx[u2]=2uDx[u]D_x [u^2] = 2u\cdot D_x[u] where:

Dx[u]=ddx(xx1/2)=112x1/2=112x.D_x[u] = \frac{d}{dx}(x - x^{1/2}) = 1 - \frac{1}{2}x^{-1/2} = 1 - \frac{1}{2\sqrt{x}}.

Thus,

Dx[(xx)2]=2(xx)(112x)D_x [ (x - \sqrt{x})^2 ] = 2(x - \sqrt{x}) \left( 1 - \frac{1}{2\sqrt{x}} \right)

Step 4

The equation of a tangent to the curve of function $g$ defined by $g(x) = ax^2 - x$ is $3x - y + 2 = 0$

98%

120 rated

Answer

To find the point of contact, we substitute the point (1,1)(-1, -1) into the function:

g(1)=a(1)2(1)=a+1.g(-1) = a(-1)^2 - (-1) = a + 1.

Setting this equal to 1-1 (the yy coordinate of the point of contact):

a+1=1a + 1 = -1

From which we solve:

a=2.a = -2.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;