Photo AI

3.1 Simplify the following without the use of a calculator: 3.1.1 $\frac{8 x^{3} y^{2}}{16 x^{r} y^{r}}$ (leave the answer with positive exponents) 3.1.2 $\sqrt{48 + \sqrt{12}} / 27$ 3.2 If $\log 5 = m$, determine the following in terms of m: 3.2.1 $\log 25$ 3.2.2 $\log 10$ 3.3 Solve for $x$: $\log_{2} (x + 3) - 3 = -\log_{2} (x - 4)$ 3.4 Given complex numbers: $z_{1} = -1 + 3i$ and $z_{2} = \sqrt{2} \operatorname{cis} 135^{\circ}$: 3.4.1 Write down the conjugate of $z_{1}$ - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Question icon

Question 3

3.1-Simplify-the-following-without-the-use-of-a-calculator:--3.1.1-$\frac{8-x^{3}-y^{2}}{16-x^{r}-y^{r}}$-(leave-the-answer-with-positive-exponents)--3.1.2-$\sqrt{48-+-\sqrt{12}}-/-27$--3.2-If-$\log-5-=-m$,-determine-the-following-in-terms-of-m:--3.2.1-$\log-25$--3.2.2-$\log-10$--3.3-Solve-for-$x$:-$\log_{2}-(x-+-3)---3-=--\log_{2}-(x---4)$--3.4-Given-complex-numbers:-$z_{1}-=--1-+-3i$-and-$z_{2}-=-\sqrt{2}-\operatorname{cis}-135^{\circ}$:--3.4.1-Write-down-the-conjugate-of-$z_{1}$-NSC Technical Mathematics-Question 3-2022-Paper 1.png

3.1 Simplify the following without the use of a calculator: 3.1.1 $\frac{8 x^{3} y^{2}}{16 x^{r} y^{r}}$ (leave the answer with positive exponents) 3.1.2 $\sqrt{48... show full transcript

Worked Solution & Example Answer:3.1 Simplify the following without the use of a calculator: 3.1.1 $\frac{8 x^{3} y^{2}}{16 x^{r} y^{r}}$ (leave the answer with positive exponents) 3.1.2 $\sqrt{48 + \sqrt{12}} / 27$ 3.2 If $\log 5 = m$, determine the following in terms of m: 3.2.1 $\log 25$ 3.2.2 $\log 10$ 3.3 Solve for $x$: $\log_{2} (x + 3) - 3 = -\log_{2} (x - 4)$ 3.4 Given complex numbers: $z_{1} = -1 + 3i$ and $z_{2} = \sqrt{2} \operatorname{cis} 135^{\circ}$: 3.4.1 Write down the conjugate of $z_{1}$ - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Step 1

3.1.1 $\frac{8 x^{3} y^{2}}{16 x^{r} y^{r}}$ (leave the answer with positive exponents)

96%

114 rated

Answer

To simplify the expression:

  1. Factor the coefficients and simplify: [ \frac{8}{16} = \frac{1}{2} ]
  2. Subtract the exponents of like bases: [ \frac{x^{3}}{x^{r}} = x^{3 - r} ] [ \frac{y^{2}}{y^{r}} = y^{2 - r} ]
  3. The result is:
    [ \frac{1}{2} x^{3 - r} y^{2 - r} ]
    Thus, the final answer is:
    [ \frac{1}{2} x^{3 - r} y^{2 - r} ]

Step 2

3.1.2 $\sqrt{48 + \sqrt{12}} / 27$

99%

104 rated

Answer

To simplify the expression:

  1. Begin with simplifying 12\sqrt{12}:
    [ \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} ]
  2. Substitute this back in:
    [ \sqrt{48 + 2\sqrt{3}} / 27 ]
  3. Now simplify 48\sqrt{48}:
    [ \sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} ]
  4. Thus the full expression is:
    [ \sqrt{4\sqrt{3} + 2\sqrt{3}} / 27 = \sqrt{6\sqrt{3}} / 27 ]

Step 3

3.2.1 $\log 25$

96%

101 rated

Answer

Using the properties of logarithms:

  1. Recognize that 25=5225 = 5^{2}:
    [ \log 25 = \log(5^{2}) = 2\log 5 ]
  2. Substituting log5=m\log 5 = m:
    [ \log 25 = 2m ]

Step 4

3.2.2 $\log 10$

98%

120 rated

Answer

Using the change of base formula and properties:

  1. We know log10=log(25)\log 10 = \log(2 \cdot 5):
    [ \log 10 = \log 2 + \log 5 ]
  2. Thus:
    [ \log 10 = \log 2 + m ]

Step 5

3.3 Solve for $x$: $\log_{2} (x + 3) - 3 = -\log_{2} (x - 4)$

97%

117 rated

Answer

To solve for xx:

  1. Begin by rewriting the equation:
    [ \log_{2} (x + 3) = -\log_{2} (x - 4) + 3 ]
  2. Convert the right side:
    [ \log_{2} (x + 3) = \log_{2} (\frac{1}{x - 4}) + 3 ]
  3. Remove logarithm by converting to exponent:
    [ x + 3 = 2^{3} (x - 4) ]
  4. Thus:
    [ x + 3 = 8(x - 4) ]
  5. Expanding yields:
    [ x + 3 = 8x - 32 ]
  6. Rearranging gives:
    [ 7x = 35 \Rightarrow x = 5 \text{ or } x = -4 ]

Step 6

3.4.1 Write down the conjugate of $z_{1}$

97%

121 rated

Answer

For the complex number:

  1. The conjugate of z1=1+3iz_{1} = -1 + 3i is given by changing the sign of the imaginary part:
    [ \overline{z_{1}} = -1 - 3i ]

Step 7

3.4.2 Express $z_{2}$ in rectangular form

96%

114 rated

Answer

Using the polar to rectangular conversion:

  1. Given z2=2cis135z_{2} = \sqrt{2} \operatorname{cis} 135^{\circ}:
  2. Expand it using the cosine and sine:
    [ z_{2} = \sqrt{2} \left( \cos 135^{\circ} + i \sin 135^{\circ} \right) ]
  3. Thus:
    [ z_{2} = \sqrt{2}\left(-\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \right) = -1 + i ]

Step 8

3.4.3 Evaluate $z_{1} - z_{2}$

99%

104 rated

Answer

To evaluate:

  1. Substitute the values:
    [ z_{1} = -1 + 3i \text{ and } z_{2} = -1 + i ]
  2. The subtraction gives:
    [ z_{1} - z_{2} = (-1 + 3i) - (-1 + i) ]
  3. Thus simplifying yields:
    [ z_{1} - z_{2} = (3i - i) = 2i ]

Step 9

3.5 Solve for $x$ and $y$ if $x + yi - (1 - i) = 4 + 5i$

96%

101 rated

Answer

Rearranging gives:

  1. Combine like terms:
    [ x + yi + 1 - i = 4 + 5i ]
  2. This leads to:
    [ x + 1 + (y - 1)i = 4 + 5i ]
  3. Equating real and imaginary parts gives two equations:
    [ x + 1 = 4 \quad\Rightarrow\quad x = 3 ]
    [ y - 1 = 5 \quad\Rightarrow\quad y = 6 ]
    Therefore:
    [ x = 3 \text{ and } y = 6 ]

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;