Photo AI

3.1 Simplify the following without the use of a calculator: 3.1.1 $\log_a a^2$ 3.1.2 $\sqrt{5x \left( \sqrt{45x + 2\sqrt{80x}} \right)}$ 3.1.3 $\left( \frac{4^{2} - 2}{3^{2} + 8} \right) \times 8$ 3.2 Solve for x: $\log(2x - 5) + \log 2 = 1$ 3.3 Given the complex number: $z = 2 + 2i$ 3.3.1 In which quadrant of the complex plane does $z$ lie? 3.3.2 Determine the value of the modulus of z - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Question icon

Question 3

3.1-Simplify-the-following-without-the-use-of-a-calculator:--3.1.1-$\log_a-a^2$--3.1.2-$\sqrt{5x-\left(-\sqrt{45x-+-2\sqrt{80x}}-\right)}$--3.1.3-$\left(-\frac{4^{2}---2}{3^{2}-+-8}-\right)-\times-8$--3.2-Solve-for-x:-$\log(2x---5)-+-\log-2-=-1$--3.3-Given-the-complex-number:-$z-=-2-+-2i$--3.3.1-In-which-quadrant-of-the-complex-plane-does-$z$-lie?--3.3.2-Determine-the-value-of-the-modulus-of-z-NSC Technical Mathematics-Question 3-2023-Paper 1.png

3.1 Simplify the following without the use of a calculator: 3.1.1 $\log_a a^2$ 3.1.2 $\sqrt{5x \left( \sqrt{45x + 2\sqrt{80x}} \right)}$ 3.1.3 $\left( \frac{4^{2}... show full transcript

Worked Solution & Example Answer:3.1 Simplify the following without the use of a calculator: 3.1.1 $\log_a a^2$ 3.1.2 $\sqrt{5x \left( \sqrt{45x + 2\sqrt{80x}} \right)}$ 3.1.3 $\left( \frac{4^{2} - 2}{3^{2} + 8} \right) \times 8$ 3.2 Solve for x: $\log(2x - 5) + \log 2 = 1$ 3.3 Given the complex number: $z = 2 + 2i$ 3.3.1 In which quadrant of the complex plane does $z$ lie? 3.3.2 Determine the value of the modulus of z - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Step 1

3.1.1 $\log_a a^2$

96%

114 rated

Answer

Using the logarithmic identity, we find:

logaa2=2logaa=2×1=2.\log_a a^2 = 2\log_a a = 2 \times 1 = 2.

Thus, the answer is: 12.\frac{1}{2}.

Step 2

3.1.2 $\sqrt{5x \left( \sqrt{45x + 2\sqrt{80x}} \right)}$

99%

104 rated

Answer

First, simplify the inner expression:\n 45x+280x=5x(9+216)=5x(9+8)=5x(17).\sqrt{45x + 2\sqrt{80x}} = \sqrt{5x(9 + 2\sqrt{16})} = \sqrt{5x(9 + 8)} = \sqrt{5x(17)}.

Therefore, we have:

5x5x(17)=5x85x=85x2=85x.\sqrt{5x \cdot \sqrt{5x(17)}} = \sqrt{5x \cdot \sqrt{85x}} = \sqrt{85x^2} = \sqrt{85} \cdot x.

Final simplification yields: 55.55.

Step 3

3.1.3 $\left( \frac{4^{2} - 2}{3^{2} + 8} \right) \times 8$

96%

101 rated

Answer

Calculating the numerator and denominator:

422=162=144^2 - 2 = 16 - 2 = 14 32+8=9+8=17.3^2 + 8 = 9 + 8 = 17.

Now substituting back into the expression gives us:

1417×8=11217.\frac{14}{17} \times 8 = \frac{112}{17}.

Step 4

3.2 Solve for x: $\log(2x - 5) + \log 2 = 1$

98%

120 rated

Answer

Using the logarithmic property to combine:

log((2x5)×2)=1.\log((2x - 5) \times 2) = 1.

This implies:

2x - 5 = 5 \\ 2x = 10 \\ x = 5.$$

Step 5

3.3.1 In which quadrant of the complex plane does $z$ lie?

97%

117 rated

Answer

The complex number z=2+2iz = 2 + 2i has positive real and imaginary parts, indicating it lies in the first quadrant.

Step 6

3.3.2 Determine the value of the modulus of z.

97%

121 rated

Answer

Using the modulus formula:

z=(2)2+(2)2=4+4=8=22.|z| = \sqrt{(2)^2 + (2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}.

Step 7

3.3.3 Hence, express z in polar form (give the angle in degrees).

96%

114 rated

Answer

The angle θ can be calculated using:

tan(θ)=ImaginaryReal=22=1\tan(\theta) = \frac{\text{Imaginary}}{\text{Real}} = \frac{2}{2} = 1 Thus, θ = 45°.

The polar form can be expressed as:

z=z(cosθ+isinθ)=22(cos45°+isin45°).z = |z| (\cos \theta + i \sin \theta) = 2\sqrt{2}(\cos 45° + i \sin 45°).

Step 8

3.4 Solve for x and y if $x - 3y = 6 + 9i$.

99%

104 rated

Answer

To solve for x and y, separate the real and imaginary parts:

From the equation x3y=6+9ix - 3y = 6 + 9i, We have:

  1. x=6x = 6 (Real part)
  2. 3y=9y=3.-3y = 9 \Rightarrow y = -3.

Thus, the solution is x=6x = 6, y=3y = -3.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;