Photo AI

3.1 Vereenvoudig die volgende, sonder om 'n sakrekenaar te gebruik: 3.1.1 7(3x)º 3.1.2 √(√242 – √72) 3.1.3 9¹⁻¹ × 27³⁻²n⁻² 8¹²⁻² 3.2 Los op vir x: log(x + 2) – log x = 1 3.3 Gee die komplekse getal: z = 5 – 5i 3.3.1 Skryf die kwadrant in die kompleksvlak neer waarin z lê - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Question icon

Question 3

3.1-Vereenvoudig-die-volgende,-sonder-om-'n-sakrekenaar-te-gebruik:--3.1.1-7(3x)º--3.1.2-√(√242-–-√72)--3.1.3-9¹⁻¹--×-27³⁻²n⁻²--8¹²⁻²--3.2-Los-op-vir-x:-log(x-+-2)-–-log-x-=-1--3.3-Gee-die-komplekse-getal:-z-=-5-–-5i--3.3.1-Skryf-die-kwadrant-in-die-kompleksvlak-neer-waarin-z-lê-NSC Technical Mathematics-Question 3-2023-Paper 1.png

3.1 Vereenvoudig die volgende, sonder om 'n sakrekenaar te gebruik: 3.1.1 7(3x)º 3.1.2 √(√242 – √72) 3.1.3 9¹⁻¹ × 27³⁻²n⁻² 8¹²⁻² 3.2 Los op vir x: log(x + 2) –... show full transcript

Worked Solution & Example Answer:3.1 Vereenvoudig die volgende, sonder om 'n sakrekenaar te gebruik: 3.1.1 7(3x)º 3.1.2 √(√242 – √72) 3.1.3 9¹⁻¹ × 27³⁻²n⁻² 8¹²⁻² 3.2 Los op vir x: log(x + 2) – log x = 1 3.3 Gee die komplekse getal: z = 5 – 5i 3.3.1 Skryf die kwadrant in die kompleksvlak neer waarin z lê - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Step 1

3.1.1 7(3x)º

96%

114 rated

Answer

To simplify, we use the property that any number raised to the power of 0 equals 1. Thus:

7(3x)0=7imes1=77(3x)^0 = 7 imes 1 = 7

Step 2

3.1.2 √(√242 – √72)

99%

104 rated

Answer

First, calculate the components:

242=(4imes61)=261√242 = √(4 imes 61) = 2√61

and

72=(36imes2)=62√72 = √(36 imes 2) = 6√2

Now subtract these values:

√(2√61 - 6√2)\

Step 3

3.1.3 9¹⁻¹ × 27³⁻²n⁻²

96%

101 rated

Answer

Using the exponent properties:

9^{-1} = rac{1}{9} = 3^{-2}, \ 27^{-2} = 3^{-6} \ \Rightarrow \ (3^{-2}) imes (3^{-6}) = 3^{-2 - 6} = 3^{-8}

Thus, we have:

\frac{1}{3^8} = \frac{1}{6561}\

Step 4

3.2 Los op vir x: log(x + 2) – log x = 1

98%

120 rated

Answer

Using the properties of logarithms, we can express this as:

log(x+2x)=1log\left(\frac{x+2}{x}\right) = 1

This leads to:

x+2x=10  x+2=10x  9x=2  x=29\frac{x+2}{x} = 10\ \Rightarrow \ x + 2 = 10x\ \Rightarrow \ 9x = 2\ \Rightarrow \ x = \frac{2}{9}

Step 5

3.3.1 z = 5 – 5i

97%

117 rated

Answer

To determine the quadrant, we observe the position of the real and imaginary parts:

  • Real part: 5 > 0
  • Imaginary part: -5 < 0

Thus, the complex number lies in the fourth quadrant.

Step 6

3.3.2 Druk die komplekse getal z in polêre vorm uit.

97%

121 rated

Answer

The polar form of a complex number is given by: z=r(cos(θ)+isin(θ)) z = r(\cos(\theta) + i\sin(\theta)) where:

  • Modulus: r=(5)2+(5)2=50=52r = \sqrt{(5)^2 + (-5)^2} = \sqrt{50} = 5\sqrt{2}
  • Argument: θ=tan1(55)=π4\theta = \tan^{-1}\left(\frac{-5}{5}\right) = -\frac{\pi}{4}

Therefore, the polar form is: z=52(cos(π4)+isin(π4))z = 5\sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right)

Step 7

3.4 Los op vir m en n indien m = 3i(2i – 5) + 7 – ni

96%

114 rated

Answer

First, simplify the expression:

3i(2i5)=3i(2i)3i(5)=6+15i3i(2i - 5) = 3i(2i) - 3i(5) = -6 + 15i

Substituting into the original equation:

m=6+15i+7ni =1+15ini. m = -6 + 15i + 7 - ni\ = 1 + 15i - ni.

Hence, we can separate the real and imaginary parts to find m and n.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;