Photo AI

Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $ rac{8 x^3 y^2}{16 x^6 y^4}$ (laat die antwoord met positiewe eksponente) 3.1.2 $ rac{ ext{√}(48 + ext{√}12)}{27}$ Indien $log_5 m$, bepaal die volgende in terme van $m$: 3.2.1 $log 25$ 3.2.2 $log 2$ Los op vir $x$: $log_2 (x + 3) - 3 = -log_2 (x - 4)$ Gegge die komplekse getalle: $z_1 = -1 + 3i$ en $z_2 = ext{√}2 ext{cis} 135^{ ext{o}}$ 3.4.1 Skryf die toegemaakte van $z_1$ neer - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Question icon

Question 3

Vereenvoudig-die-volgende-sonder-om-'n-sakrekenaar-te-gebruik:--3.1.1--$-rac{8-x^3-y^2}{16-x^6-y^4}$-(laat-die-antwoord-met-positiewe-eksponente)--3.1.2-$-rac{-ext{√}(48-+--ext{√}12)}{27}$--Indien-$log_5-m$,-bepaal-die-volgende-in-terme-van-$m$:--3.2.1--$log-25$--3.2.2--$log-2$--Los-op-vir-$x$:--$log_2-(x-+-3)---3-=--log_2-(x---4)$--Gegge-die-komplekse-getalle:--$z_1-=--1-+-3i$-en-$z_2-=--ext{√}2--ext{cis}-135^{-ext{o}}$--3.4.1--Skryf-die-toegemaakte-van-$z_1$-neer-NSC Technical Mathematics-Question 3-2022-Paper 1.png

Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $ rac{8 x^3 y^2}{16 x^6 y^4}$ (laat die antwoord met positiewe eksponente) 3.1.2 $ rac{ ext{√... show full transcript

Worked Solution & Example Answer:Vereenvoudig die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $ rac{8 x^3 y^2}{16 x^6 y^4}$ (laat die antwoord met positiewe eksponente) 3.1.2 $ rac{ ext{√}(48 + ext{√}12)}{27}$ Indien $log_5 m$, bepaal die volgende in terme van $m$: 3.2.1 $log 25$ 3.2.2 $log 2$ Los op vir $x$: $log_2 (x + 3) - 3 = -log_2 (x - 4)$ Gegge die komplekse getalle: $z_1 = -1 + 3i$ en $z_2 = ext{√}2 ext{cis} 135^{ ext{o}}$ 3.4.1 Skryf die toegemaakte van $z_1$ neer - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Step 1

3.1.1 $ rac{8 x^3 y^2}{16 x^6 y^4}$ (laat die antwoord met positiewe eksponente)

96%

114 rated

Answer

First, simplify the fraction:

rac{8}{16} imes rac{x^3}{x^6} imes rac{y^2}{y^4} = rac{1}{2} imes x^{-3} imes y^{-2}

Next, express all terms with positive exponents:

= rac{1}{2} imes rac{1}{x^3} imes rac{1}{y^2} = rac{1}{2x^3 y^2}

Step 2

3.1.2 $ rac{ ext{√}(48 + ext{√}12)}{27}$

99%

104 rated

Answer

First, simplify the expression inside the square root:

48=16imes3extandext12=2ext348 = 16 imes 3 ext{ and } ext{√}12 = 2 ext{√}3

So,

ext(48+ext12)=ext(16imes3+2ext3) ext{√}(48 + ext{√}12) = ext{√}(16 imes 3 + 2 ext{√}3)

You can factor out terms further to simplify, but for clarity, we shall keep this result as:

rac{ ext{√}(48 + 2 ext{√}3)}{27}

Step 3

3.2.1 $log 25$

96%

101 rated

Answer

Since log5mlog_5 m, we can rewrite:

log25=log(52)=2log5=2mlog 25 = log(5^2) = 2 log 5 = 2m

Step 4

3.2.2 $log 2$

98%

120 rated

Answer

Using the change of base property:

log2=log(10)log(5)=1mlog 2 = log(10) - log(5) = 1 - m

Step 5

3.3 $log_2 (x + 3) - 3 = -log_2 (x - 4)$

97%

117 rated

Answer

Rearranging gives:

log2(x+3)+log2(x4)=3log_2 (x + 3) + log_2 (x - 4) = 3

This leads to:

log2((x+3)(x4))=3log_2((x + 3)(x - 4)) = 3

Thus:

(x+3)(x4)=23=8(x + 3)(x - 4) = 2^3 = 8

Expanding the left side, we have:

ightarrow x^2 - x - 20 = 0$$ Using the quadratic formula: $$x = rac{-(-1) ext{±} ext{√}((-1)^2 - 4(1)(-20))}{2(1)}$$ This yields $x = 5$ or $x = -4$.

Step 6

3.4.1 Skryf die toegemaakte van $z_1$ neer.

97%

121 rated

Answer

The conjugate of z1=1+3iz_1 = -1 + 3i is:

z1=13iz_1^* = -1 - 3i

Step 7

3.4.2 Druk $z_2$ in reghoekvorm uit.

96%

114 rated

Answer

We expand:

z2=ext2extcis135exto=ext2(extcos135exto+iextsin135exto)z_2 = ext{√}2 ext{cis} 135^{ ext{o}} = ext{√}2 ( ext{cos} 135^{ ext{o}} + i ext{sin} 135^{ ext{o}})

Calculating:

= ext{√}2(- rac{1}{ ext{√}2} + i imes rac{1}{ ext{√}2}) = -1 + i

Step 8

3.4.3 Evalueer $z_1 - z_2$.

99%

104 rated

Answer

Thus, using the values found:

z1z2=(1+3i)(1+i)=2iz_1 - z_2 = (-1 + 3i) - (-1 + i) = 2i

Step 9

Los op vir $x$ en $y$ indien x + yi - (1 - i) = 4 + 5i

96%

101 rated

Answer

Rearranging gives:

x+yi=4+5i+1ix + yi = 4 + 5i + 1 - i

Thus:

x+yi=5+4ix + yi = 5 + 4i

From here, we identify:

x=5extandy=4x = 5 ext{ and } y = 4

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;