Photo AI

The diagram below shows a cyclic quadrilateral TSMR - NSC Technical Mathematics - Question 6 - 2024 - Paper 2

Question icon

Question 6

The-diagram-below-shows-a-cyclic-quadrilateral-TSMR-NSC Technical Mathematics-Question 6-2024-Paper 2.png

The diagram below shows a cyclic quadrilateral TSMR. TS = 22 m and TR = 18 m ∠T = 67° and ∠R₁ = 42,5° Determine: 6.1 Determine: 6.1.1 The length of SR 6.1.2 Th... show full transcript

Worked Solution & Example Answer:The diagram below shows a cyclic quadrilateral TSMR - NSC Technical Mathematics - Question 6 - 2024 - Paper 2

Step 1

6.1.1 The length of SR

96%

114 rated

Answer

To find the length of SR, we can apply the cosine rule in triangle TSR:

SR2=TS2+TR22imesTSimesTRimesextcos(67°)SR^2 = TS^2 + TR^2 - 2 imes TS imes TR imes ext{cos}(67°)

Substituting the given values:

SR2=(22)2+(18)22(22)(18)extcos(67°)SR^2 = (22)^2 + (18)^2 - 2(22)(18) ext{cos}(67°)

Calculating this:

SR2=484+3242imes22imes18imes0.39073SR^2 = 484 + 324 - 2 imes 22 imes 18 imes 0.39073 SR2=497.5489SR^2 = 497.5489

Thus, SR=extsqrt(497.5489)22.33extmSR = ext{sqrt}(497.5489) ≈ 22.33 ext{ m}

Step 2

6.1.2 The size of ∠M

99%

104 rated

Answer

To find the size of ∠M, we use the property that the sum of angles in a triangle equals 180°.

Thus:

M=180°67°42.5°=70.5°M = 180° - 67° - 42.5° = 70.5°

Step 3

6.2.1 Complete the sine rule:

96%

101 rated

Answer

Using the sine rule in triangle SMR:

SMextsinR=SRextsinR1 \frac{SM}{ ext{sin} R} = \frac{SR}{ ext{sin} R₁}

Step 4

6.2.2 Hence, determine the length of SM.

98%

120 rated

Answer

From the sine rule:

Rearranging gives:

SM=SR×extsinRextsinR1SM = SR \times \frac{ ext{sin} R}{ ext{sin} R₁}

Using previously computed values:

SM=22.33×extsin(42.5°)extsin(70.5°)SM = 22.33 \times \frac{ ext{sin}(42.5°)}{ ext{sin}(70.5°) }

Calculate:

SM22.33×0.6819916.39extmSM ≈ 22.33 \times 0.68199 ≈ 16.39 ext{ m}

Step 5

6.3 The area of ΔSMR

97%

117 rated

Answer

To determine the area of ΔSMR, we can use the formula:

extArea=12×SR×SM×sinM ext{Area} = \frac{1}{2} \times SR \times SM \times \text{sin} M

Where:

  • The area in square metres required depends on the computed lengths and angle.
  • Since one bag covers 15178 square metres, number of bags required is:

Number of bags=extArea15178\text{Number of bags} = \frac{ ext{Area}}{15178}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;