Photo AI

Gegee: P̂ = 119° en Q̂ = 61° Bepaal: 3.1.1 cosec P × tan Q 3.1.2 cos²(P̂ + 2Q) Gegee: rac{1}{2}tan heta = 2, waar heta ext{ e } [0° ; 90°] Toon, sonder die gebruik van 'n sakrekenaar, dat sin² heta + cos² heta = 1 3.3 Los op vir x: sin x = tan 318°, waar x ext{ e } [0° ; 360°] - NSC Technical Mathematics - Question 3 - 2024 - Paper 2

Question icon

Question 3

Gegee:---P̂-=-119°-en-Q̂-=-61°----Bepaal:---3.1.1-cosec-P-×-tan-Q---3.1.2-cos²(P̂-+-2Q)----Gegee:----rac{1}{2}tan--heta-=-2,-waar--heta--ext{-e-}-[0°-;-90°]----Toon,-sonder-die-gebruik-van-'n-sakrekenaar,-dat--sin²--heta-+-cos²--heta-=-1----3.3--Los-op-vir-x:---sin-x-=-tan-318°,-waar-x--ext{-e-}-[0°-;-360°]-NSC Technical Mathematics-Question 3-2024-Paper 2.png

Gegee: P̂ = 119° en Q̂ = 61° Bepaal: 3.1.1 cosec P × tan Q 3.1.2 cos²(P̂ + 2Q) Gegee: rac{1}{2}tan heta = 2, waar heta ext{ e } [0° ; 90°] Toon,... show full transcript

Worked Solution & Example Answer:Gegee: P̂ = 119° en Q̂ = 61° Bepaal: 3.1.1 cosec P × tan Q 3.1.2 cos²(P̂ + 2Q) Gegee: rac{1}{2}tan heta = 2, waar heta ext{ e } [0° ; 90°] Toon, sonder die gebruik van 'n sakrekenaar, dat sin² heta + cos² heta = 1 3.3 Los op vir x: sin x = tan 318°, waar x ext{ e } [0° ; 360°] - NSC Technical Mathematics - Question 3 - 2024 - Paper 2

Step 1

3.1.1 cosec P × tan Q

96%

114 rated

Answer

To find cosec P and tan Q, we use the definitions of the trigonometric functions:

ext{cosec } P = rac{1}{ ext{sin } P} = rac{1}{ ext{sin } 119°}

Using a calculator, we find:

extcosecPextapproximatesto1.0520 ext{cosec } P ext{ approximates to } 1.0520

Next, for tan Q:

exttanQ=exttan61° ext{tan } Q = ext{tan } 61°

Using a calculator, we get:

exttan61°extapproximatesto1.8040 ext{tan } 61° ext{ approximates to } 1.8040

Then we compute:

extcosecPimesexttanQ=1.0520imes1.8040extwhichequalsapproximately1.90 ext{cosec } P imes ext{tan } Q = 1.0520 imes 1.8040 ext{ which equals approximately } 1.90

Step 2

3.1.2 cos²(P̂ + 2Q)

99%

104 rated

Answer

To calculate cos²(P̂ + 2Q):

  1. First calculate 2Q:

    2Q=2imes61°=122°2Q = 2 imes 61° = 122°

  2. Now find P + 2Q:

    P+2Q=119°+122°=241°P + 2Q = 119° + 122° = 241°

  3. Calculate cos(241°):

    Using a calculator, we find:

    extcos(241°)extapproximatesto0.4067 ext{cos}(241°) ext{ approximates to } -0.4067

  4. Finally, calculate cos²(241°):

    extcos2(241°)=(0.4067)2extwhichequalsapproximately0.1654 ext{cos}^2(241°) = (-0.4067)^2 ext{ which equals approximately } 0.1654

Step 3

3.2 rac{1}{2}tan heta = 2, waar heta e [0° ; 90°]

96%

101 rated

Answer

Starting with the equation:

rac{1}{2}tan heta = 2

  1. Multiply both sides by 2:

    tanheta=4tan heta = 4

  2. Now, find heta:

    heta=tan1(4) heta = tan^{-1}(4)

Using a calculator, we find:

hetaextapproximatesto75.96° heta ext{ approximates to } 75.96°

Step 4

Toon, sonder die gebruik van 'n sakrekenaar, dat sin² θ + cos² θ = 1

98%

120 rated

Answer

We start with the Pythagorean identity:

sin2θ+cos2θ=r2sin² θ + cos² θ = r²

where r=1r = 1 for unit circle representation. This leads to:

  1. For sin θ:

    sin² θ = ( rac{ ext{opposite}}{ ext{hypotenuse}})^2 = rac{(1)^2}{(1)^2} = 1

  2. For cos θ:

    cos² θ = ( rac{ ext{adjacent}}{ ext{hypotenuse}})^2 = rac{(0)^2}{(1)^2} = 0

Hence,

sin2θ+cos2θ=1+0=1sin² θ + cos² θ = 1 + 0 = 1

Step 5

3.3 sin x = tan 318°, waar x e [0° ; 360°]

97%

117 rated

Answer

To solve for x:

  1. Compute tan 318°:

    an(318°)=an(42°)ext(since318°=360°42°) an(318°) = an(-42°) ext{ (since } 318° = 360° - 42°)

Using a calculator, we find:

an(318°)extapproximatesto0.9004 an(318°) ext{ approximates to } -0.9004

  1. Set the equation:

    sinx=0.9004sin x = -0.9004

  2. To find x, we look for angles in the 3rd and 4th quadrants:

x243.21°ext(3rdquadrant)and295.79°ext(4thquadrant)x ≈ 243.21° ext{ (3rd quadrant) and } 295.79° ext{ (4th quadrant) }

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;