Photo AI

Given $Q = 42^{ ext{o}}$ and $P = 71^{ ext{o}}$\ Determine:\ 3.1.1 \text{ } cot(P - Q)\ 3.1.2 \text{ } \frac{cos Q}{sec P}\ \ Given $3sec \beta - 5 = 0$ and $\beta \in [90^{ ext{o}} ; 360^{ ext{o}}]$\ Determine $sin^{2} \beta - cos^{2} \beta$ with the aid of a diagram.\ \ Solve for $x$: $cos 2x - tan 29^{ ext{o}} = 0$ and $2x \in [0^{ ext{o}}; 360^{ ext{o}}]$ - NSC Technical Mathematics - Question 3 - 2022 - Paper 2

Question icon

Question 3

Given-$Q-=-42^{-ext{o}}$-and-$P-=-71^{-ext{o}}$\-Determine:\-3.1.1-\text{-}-cot(P---Q)\-3.1.2-\text{-}-\frac{cos-Q}{sec-P}\-\-Given-$3sec-\beta---5-=-0$-and-$\beta-\in-[90^{-ext{o}}-;-360^{-ext{o}}]$\-Determine-$sin^{2}-\beta---cos^{2}-\beta$-with-the-aid-of-a-diagram.\-\-Solve-for-$x$:-$cos-2x---tan-29^{-ext{o}}-=-0$-and-$2x-\in-[0^{-ext{o}};-360^{-ext{o}}]$-NSC Technical Mathematics-Question 3-2022-Paper 2.png

Given $Q = 42^{ ext{o}}$ and $P = 71^{ ext{o}}$\ Determine:\ 3.1.1 \text{ } cot(P - Q)\ 3.1.2 \text{ } \frac{cos Q}{sec P}\ \ Given $3sec \beta - 5 = 0$ and $\beta \... show full transcript

Worked Solution & Example Answer:Given $Q = 42^{ ext{o}}$ and $P = 71^{ ext{o}}$\ Determine:\ 3.1.1 \text{ } cot(P - Q)\ 3.1.2 \text{ } \frac{cos Q}{sec P}\ \ Given $3sec \beta - 5 = 0$ and $\beta \in [90^{ ext{o}} ; 360^{ ext{o}}]$\ Determine $sin^{2} \beta - cos^{2} \beta$ with the aid of a diagram.\ \ Solve for $x$: $cos 2x - tan 29^{ ext{o}} = 0$ and $2x \in [0^{ ext{o}}; 360^{ ext{o}}]$ - NSC Technical Mathematics - Question 3 - 2022 - Paper 2

Step 1

Determine: cot(P - Q)

96%

114 rated

Answer

To find cot(PQ)cot(P - Q), we substitute values into the cotangent function:

cot(PQ)=cot(71exto42exto)cot(P - Q) = cot(71^{ ext{o}} - 42^{ ext{o}}) =cot(29exto)= cot(29^{ ext{o}}) Using the identity cotθ=1tanθcot \theta = \frac{1}{tan \theta}: =1tan(29exto)1.80= \frac{1}{tan(29^{ ext{o}})} \approx 1.80

Step 2

Determine: cos Q / sec P

99%

104 rated

Answer

To find the ratio of cosQcos Q and secPsec P, we use the definitions of these trigonometric functions:

secP=1cosPsec P = \frac{1}{cos P} Thus, cosQsecP=cos(42exto)×cos(71exto)\frac{cos Q}{sec P} = cos(42^{ ext{o}}) \times cos(71^{ ext{o}}) Substituting the values: cos(42exto)sec(71exto)0.24\frac{cos(42^{ ext{o}})}{sec(71^{ ext{o}})} \approx 0.24

Step 3

Determine sin² β - cos² β

96%

101 rated

Answer

From the equation 3secβ5=03sec \beta - 5 = 0, we can isolate secβsec \beta:

secβ=53sec \beta = \frac{5}{3} The identity secβ=1cosβsec \beta = \frac{1}{cos \beta} gives: cosβ=35cos \beta = \frac{3}{5} Next, we calculate: sin2β=1cos2β=1(35)2=1925=1625sin^{2} \beta = 1 - cos^{2} \beta = 1 - \left(\frac{3}{5}\right)^{2} = 1 - \frac{9}{25} = \frac{16}{25} Thus: sin2βcos2β=1625(35)2=1625925=725sin^{2} \beta - cos^{2} \beta = \frac{16}{25} - \left(\frac{3}{5}\right)^{2} = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}

Step 4

Solve for: cos 2x - tan 29° = 0

98%

120 rated

Answer

To solve for xx, start with:

cos2x=tan29extocos 2x = tan 29^{ ext{o}} Substituting the value: cos2x=0.554309051cos 2x = 0.554309051 Finding 2x2x: 2x=cos1(0.554309051)2x = cos^{-1}(0.554309051) Calculating: 2x34.34exto2x \approx 34.34^{ ext{o}} Considering the periodicity of cosine functions, we find: x17.17extox \approx 17.17^{ ext{o}} or x151.83extox \approx 151.83^{ ext{o}}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;