Given $Q = 42^{ ext{o}}$ and $P = 71^{ ext{o}}$\
Determine:\
3.1.1 \text{ } cot(P - Q)\
3.1.2 \text{ } \frac{cos Q}{sec P}\
\
Given $3sec \beta - 5 = 0$ and $\beta \in [90^{ ext{o}} ; 360^{ ext{o}}]$\
Determine $sin^{2} \beta - cos^{2} \beta$ with the aid of a diagram.\
\
Solve for $x$: $cos 2x - tan 29^{ ext{o}} = 0$ and $2x \in [0^{ ext{o}}; 360^{ ext{o}}]$ - NSC Technical Mathematics - Question 3 - 2022 - Paper 2
Question 3
Given $Q = 42^{ ext{o}}$ and $P = 71^{ ext{o}}$\
Determine:\
3.1.1 \text{ } cot(P - Q)\
3.1.2 \text{ } \frac{cos Q}{sec P}\
\
Given $3sec \beta - 5 = 0$ and $\beta \... show full transcript
Worked Solution & Example Answer:Given $Q = 42^{ ext{o}}$ and $P = 71^{ ext{o}}$\
Determine:\
3.1.1 \text{ } cot(P - Q)\
3.1.2 \text{ } \frac{cos Q}{sec P}\
\
Given $3sec \beta - 5 = 0$ and $\beta \in [90^{ ext{o}} ; 360^{ ext{o}}]$\
Determine $sin^{2} \beta - cos^{2} \beta$ with the aid of a diagram.\
\
Solve for $x$: $cos 2x - tan 29^{ ext{o}} = 0$ and $2x \in [0^{ ext{o}}; 360^{ ext{o}}]$ - NSC Technical Mathematics - Question 3 - 2022 - Paper 2
Step 1
Determine: cot(P - Q)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find cot(P−Q), we substitute values into the cotangent function:
cot(P−Q)=cot(71exto−42exto)=cot(29exto)
Using the identity cotθ=tanθ1:
=tan(29exto)1≈1.80
Step 2
Determine: cos Q / sec P
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the ratio of cosQ and secP, we use the definitions of these trigonometric functions:
secP=cosP1
Thus,
secPcosQ=cos(42exto)×cos(71exto)
Substituting the values:
sec(71exto)cos(42exto)≈0.24
Step 3
Determine sin² β - cos² β
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
From the equation 3secβ−5=0, we can isolate secβ:
secβ=35
The identity secβ=cosβ1 gives:
cosβ=53
Next, we calculate:
sin2β=1−cos2β=1−(53)2=1−259=2516
Thus:
sin2β−cos2β=2516−(53)2=2516−259=257
Step 4
Solve for: cos 2x - tan 29° = 0
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve for x, start with:
cos2x=tan29exto
Substituting the value:
cos2x=0.554309051
Finding 2x:
2x=cos−1(0.554309051)
Calculating:
2x≈34.34exto
Considering the periodicity of cosine functions, we find:
x≈17.17exto or x≈151.83exto