Photo AI

Given: $x = 152^{ ext{o}} 4'$, $y = 24^{ ext{o}}$ - NSC Technical Mathematics - Question 3 - 2023 - Paper 2

Question icon

Question 3

Given:-$x-=-152^{-ext{o}}-4'$,-$y-=-24^{-ext{o}}$-NSC Technical Mathematics-Question 3-2023-Paper 2.png

Given: $x = 152^{ ext{o}} 4'$, $y = 24^{ ext{o}}$. Determine the following: 3.1.1. $sin (B)$ 3.1.2. $\frac{1}{2}sec(\frac{x}{2} + 80^{ ext{o}})$ Given: $\beta =... show full transcript

Worked Solution & Example Answer:Given: $x = 152^{ ext{o}} 4'$, $y = 24^{ ext{o}}$ - NSC Technical Mathematics - Question 3 - 2023 - Paper 2

Step 1

sin (B)

96%

114 rated

Answer

To find the value of sin(B)sin(B), we can directly apply the formula.

Given: B=y=24extoB = y = 24^{ ext{o}}

Thus, sin(B)=sin(24exto)0.4067sin(B) = sin(24^{ ext{o}}) \approx 0.4067

Hence, the result is: B0.41B \approx 0.41.

Step 2

\frac{1}{2}sec(\frac{x}{2} + 80^{\text{o}})

99%

104 rated

Answer

For this part, we first calculate:

Given: x=152o4=152.067ox = 152^{\text{o}} 4' = 152.067^{\text{o}}

Now, let's compute: x2=152.067o2=76.0335o\frac{x}{2} = \frac{152.067^{\text{o}}}{2} = 76.0335^{\text{o}}

Next, we add 80°: x2+80o=76.0335o+80o=156.0335o\frac{x}{2} + 80^{\text{o}} = 76.0335^{\text{o}} + 80^{\text{o}} = 156.0335^{\text{o}}

Now we find the secant: sec(156.0335o)=1cos(156.0335o)sec(156.0335^{\text{o}}) = \frac{1}{cos(156.0335^{\text{o}})}

Substituting in the original equation gives: 12sec(156.0335o)=121cos(156.0335o)2.97\frac{1}{2} sec(156.0335^{\text{o}}) = \frac{1}{2} \cdot \frac{1}{cos(156.0335^{\text{o}})} \approx 2.97.

Step 3

cosec \beta

96%

101 rated

Answer

To find cosec(β)cosec(\beta), we use the relation:

cosec(β)=1sin(β)cosec(\beta) = \frac{1}{sin(\beta)}

Substituting the value of sin(β)=45sin(\beta) = -\frac{4}{5} leads to:

cosec(β)=145=54cosec(\beta) = \frac{1}{-\frac{4}{5}} = -\frac{5}{4}.

Step 4

tan \beta + cos \beta

98%

120 rated

Answer

For this calculation, we first compute tan(β)tan(\beta).

Using the Pythagorean identity, we find: cos(β)=45β=180o+arcsin(45)cos(\beta) = -\frac{4}{5} \Rightarrow \beta = 180^{\text{o}} + \arcsin(-\frac{4}{5})

This leads to: tan(β)=sin(β)cos(β)=4535=43tan(\beta) = \frac{sin(\beta)}{cos(\beta)} = \frac{-\frac{4}{5}}{-\frac{3}{5}} = \frac{4}{3}

So, finally: tan(β)+cos(β)=4334=1612912=712tan(\beta) + cos(\beta) = \frac{4}{3} - \frac{3}{4} = \frac{16}{12} - \frac{9}{12} = \frac{7}{12}.

Step 5

Determine the value(s) of x if cos x = -sin 56.7^{o}

97%

117 rated

Answer

Given: cos(x)=sin(56.7o)cos(x) = -sin(56.7^{\text{o}})

Using the identity sin(90oθ)sin(90^{\text{o}} - \theta) gives: cos(x)=cos(33.3o)cos(x) = -cos(33.3^{\text{o}})

This implies:

  1. x=180o+33.3o=213.3ox = 180^{\text{o}} + 33.3^{\text{o}} = 213.3^{\text{o}}
  2. x=360o33.3o=326.7ox = 360^{\text{o}} - 33.3^{\text{o}} = 326.7^{\text{o}}

Therefore, we find: x{213.3o,326.7o}x \in \{ 213.3^{\text{o}}, 326.7^{\text{o}} \}.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;