Photo AI
Question 4
4.1 Given: tan(π + A) ⋅ cos(180° − A) ⋅ sin(360° − A) divided by sin(2π + A) 4.1.1 Simplify by reduction: tan(π + A) 4.1.2 Simplify: tan(π + A) ⋅ cos(180° − A)... show full transcript
Step 1
Step 2
Answer
First, simplify each component:
sin(2π + A) = sin(A)
Now, substitute these values into the original expression:
rac{ an(A) imes (- ext{cos}(A)) imes (- ext{sin}(A))}{ ext{sin}(A)}
This simplifies to:
tan(A) imes ext{cos}(A)
Therefore, the final answer is:
tan(A) imes ext{cos}(A)
Step 3
Step 4
Answer
Begin by rewriting the left-hand side:
LHS:
sin x + cos² x − rac{1}{ ext{sin} x}
Using the identity: cos² x = 1 − sin² x,
we have:
LHS = sin x + (1 − sin² x) − rac{1}{ ext{sin} x} = 1 − sin x − rac{1}{ ext{sin} x}.
Now simplifying this:
rac{ ext{sin}^2 x}{ ext{sin} x} + 1 − rac{1}{ ext{sin} x} = rac{ ext{sin}^2 x + ext{sin} x − 1}{ ext{sin} x}.
The right-hand side:
RHS: rac{1}{ ext{sin} x} = cosec x.
Thus, the equation is equal to:
LHS = RHS, proving the identity:
Report Improved Results
Recommend to friends
Students Supported
Questions answered