Gegee:
tan(π + A) · cos(180° - A) - sin(360° - A)
sin(2π + A)
4.1.1 Vereenvoudig deur reduksie:
tan(π + A)
4.1.2 Vereenvoudig:
tan(π + A) · cos(180° - A) - sin(360° - A)
sin(2π + A)
4.2 Voltooi die identiteit:
cot² x - cosec² x =
4.3 Bewys die identiteit:
sin x + cos² x - cosec x = cosec x - NSC Technical Mathematics - Question 4 - 2024 - Paper 2
Question 4
Gegee:
tan(π + A) · cos(180° - A) - sin(360° - A)
sin(2π + A)
4.1.1 Vereenvoudig deur reduksie:
tan(π + A)
4.1.2 Vereenvoudig:
tan(π + A) · cos(180° - A) - sin(36... show full transcript
Worked Solution & Example Answer:Gegee:
tan(π + A) · cos(180° - A) - sin(360° - A)
sin(2π + A)
4.1.1 Vereenvoudig deur reduksie:
tan(π + A)
4.1.2 Vereenvoudig:
tan(π + A) · cos(180° - A) - sin(360° - A)
sin(2π + A)
4.2 Voltooi die identiteit:
cot² x - cosec² x =
4.3 Bewys die identiteit:
sin x + cos² x - cosec x = cosec x - NSC Technical Mathematics - Question 4 - 2024 - Paper 2
Step 1
Vereenvoudig deur reduksie: tan(π + A)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To simplify, we use the identity for tangent:
an(π+A)=an(A)
Therefore, the result is:
an(π+A)=anA
Step 2
Vereenvoudig: tan(π + A) · cos(180° - A) - sin(360° - A) / sin(2π + A)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using angle identities, we can simplify both terms:
For cos(180°−A), it equals −cosA;
For sin(360°−A), it equals −sinA;
For sin(2π+A), it equals sinA,
Substituting these into our equation:
rac{ an(π + A) imes (- ext{cos} A) + ext{sin} A}{ ext{sin} A}
Thus, we have:
= rac{ an A imes - ext{cos} A + ext{sin} A}{ ext{sin} A}
This further simplifies to:
an A imes -rac{ ext{cos} A}{ ext{sin} A} + 1
Which concludes that:
=−extcotA+1
Step 3
Voltooi die identiteit: cot² x - cosec² x =
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We start with the left-hand side:
Recall the identity: extcot2x+1=extcosec2x
Rearranging gives:
extcot2x=extcosec2x−1
So we can conclude that:
cot2x−cosec2x=−1
Step 4
Bewys die identiteit: sin x + cos² x - cosec x = cosec x
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Starting from the left-hand side:
Recognize that ext{cosec} x = rac{1}{ ext{sin} x};
This gives us:
ext{LHS} = ext{sin} x + ext{cos}^2 x - rac{1}{ ext{sin} x}
3. Now we can convert extcos2x using the identity extcos2x=1−extsin2x;
4. Substituting this provides:
ext{LHS} = ext{sin} x + 1 - ext{sin}^2 x - rac{1}{ ext{sin} x};
5. This simplifies down to the right-hand side: