Photo AI

4.1 cos B 4.2.1 sin² P 4.2.2 sin β cos β 4.3 2sin(π + B)·cos(2π - B) - cos(180° - B) + cos(180° + B) = (−2 sin B)·cos B(− tan B) + (− cos(180° - B)) = 2sin B·cos B - cos B·2cos B = 2(sin² B + cos² B) = 2(1) = 2 4.4 cos θ + sin² θ·sec θ = tan θ cosec θ LHS / LK = cos θ / sin θ·sec θ / cosec θ = 1 / sin θ = cos² θ + sin² θ = 1 - NSC Technical Mathematics - Question 4 - 2023 - Paper 2

Question icon

Question 4

4.1----cos-B--4.2.1----sin²-P--4.2.2----sin-β----cos-β-----4.3----2sin(π-+-B)·cos(2π---B)---cos(180°---B)-+-cos(180°-+-B)----=-(−2-sin-B)·cos-B(−-tan-B)-+-(−-cos(180°---B))----=-2sin-B·cos-B---cos-B·2cos-B----=-2(sin²-B-+-cos²-B)----=-2(1)----=-2--4.4----cos-θ-+-sin²-θ·sec-θ-=-tan-θ----cosec-θ--------LHS-/-LK-=-cos-θ-/-sin-θ·sec-θ-/-cosec-θ----=-1-/-sin-θ----=-cos²-θ-+-sin²-θ----=-1-NSC Technical Mathematics-Question 4-2023-Paper 2.png

4.1 cos B 4.2.1 sin² P 4.2.2 sin β cos β 4.3 2sin(π + B)·cos(2π - B) - cos(180° - B) + cos(180° + B) = (−2 sin B)·cos B(− tan B) + (− cos(180... show full transcript

Worked Solution & Example Answer:4.1 cos B 4.2.1 sin² P 4.2.2 sin β cos β 4.3 2sin(π + B)·cos(2π - B) - cos(180° - B) + cos(180° + B) = (−2 sin B)·cos B(− tan B) + (− cos(180° - B)) = 2sin B·cos B - cos B·2cos B = 2(sin² B + cos² B) = 2(1) = 2 4.4 cos θ + sin² θ·sec θ = tan θ cosec θ LHS / LK = cos θ / sin θ·sec θ / cosec θ = 1 / sin θ = cos² θ + sin² θ = 1 - NSC Technical Mathematics - Question 4 - 2023 - Paper 2

Step 1

cos B

96%

114 rated

Answer

The value of cos B is simply stated as cos B.

Step 2

sin² P

99%

104 rated

Answer

The expression gives the value of sin² P, indicating its identity.

Step 3

sin β

96%

101 rated

Answer

Start with sin β/cos β and recognize that this can be simplified.

Step 4

2sin(π + B)·cos(2π - B) - cos(180° - B) + cos(180° + B)

98%

120 rated

Answer

Evaluate the trigonometric identities involved in this expression.

  1. Rewrite the equation using known values:

    =(2sinB)cosB(tanB)+(cos(180°B)) = (−2 sin B)·cos B(− tan B) + (− cos(180° - B))

  2. Continue to simplify: =2sinBcosBcosB2cosB = 2sin B·cos B - cos B·2cos B

  3. Factor the terms: =2(sin2B+cos2B) = 2(sin² B + cos² B)

  4. Utilize the Pythagorean identity: =2(1) = 2(1)

  5. Thus, the result is: =2 = 2

Step 5

cos θ + sin² θ·sec θ = tan θ

97%

117 rated

Answer

Examine both sides of the equation:

  1. Begin with: LHS/LK=cosθsinθsecθcosecθ LHS / LK = \frac{cos θ}{sin θ}\cdot\frac{sec θ}{cosec θ}
  2. Simplify: =1sinθ = \frac{1}{sin θ}
  3. Recognize that: =cos2θ+sin2θ = cos² θ + sin² θ
  4. Final expression: =1 = 1

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;