Photo AI

Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $ \left( 2a^3 \right)^3$ 3.1.2 $\log_p p + \log_{1}$ 3.1.3 $\frac{\sqrt{48 - \sqrt{12}}}{2\sqrt{75}}$ - NSC Technical Mathematics - Question 3 - 2018 - Paper 1

Question icon

Question 3

Vereenvoudig-(toon-ALLE-berekeninge)-die-volgende-sonder-om-'n-sakrekenaar-te-gebruik:--3.1.1-$-\left(-2a^3-\right)^3$--3.1.2--$\log_p-p-+-\log_{1}$--3.1.3--$\frac{\sqrt{48---\sqrt{12}}}{2\sqrt{75}}$--NSC Technical Mathematics-Question 3-2018-Paper 1.png

Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $ \left( 2a^3 \right)^3$ 3.1.2 $\log_p p + \log_{1}$ 3.1.3 $\frac{\... show full transcript

Worked Solution & Example Answer:Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $ \left( 2a^3 \right)^3$ 3.1.2 $\log_p p + \log_{1}$ 3.1.3 $\frac{\sqrt{48 - \sqrt{12}}}{2\sqrt{75}}$ - NSC Technical Mathematics - Question 3 - 2018 - Paper 1

Step 1

3.1.1 $ \left( 2a^3 \right)^3$

96%

114 rated

Answer

To simplify the expression (2a3)3\left( 2a^3 \right)^3, we use the property of exponents that states (xy)n=xnyn(xy)^n = x^n y^n.

Thus,

(2a3)3=23(a3)3=8a9.\left( 2a^3 \right)^3 = 2^3 \cdot (a^3)^3 = 8a^{9}.

Step 2

3.1.2 $\log_p p + \log_{1}$

99%

104 rated

Answer

Using the property of logarithms, we have:

logpp=1,\log_p p = 1, since any log base of itself is equal to one.

For log1\log_{1}, the result is 00, because anything to the power of 0 gives 1, thus: log1=0.\log_{1} = 0.

Hence, logpp+log1=1+0=1.\log_p p + \log_{1} = 1 + 0 = 1.

Step 3

3.1.3 $\frac{\sqrt{48 - \sqrt{12}}}{2\sqrt{75}}$

96%

101 rated

Answer

First, we simplify 12\sqrt{12} and 75\sqrt{75}:

12=2375=53.\sqrt{12} = 2\sqrt{3} \\ \sqrt{75} = 5\sqrt{3}.

Substituting these values back, we have:

4823253=4823103.\frac{\sqrt{48 - 2\sqrt{3}}}{2 \cdot 5\sqrt{3}} = \frac{\sqrt{48 - 2\sqrt{3}}}{10\sqrt{3}}.

Next, find 4823\sqrt{48 - 2\sqrt{3}} which is more complicated; thus we leave it as is if we cannot simplify further.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;