Photo AI

In die diagram hieronder is P(3 ; m) 'n punt op 'n Kartesiese vlak met OP = \sqrt{13} \beta 'n skerphoek - NSC Technical Mathematics - Question 3 - 2021 - Paper 1

Question icon

Question 3

In-die-diagram-hieronder-is--P(3-;-m)-'n-punt-op-'n-Kartesiese-vlak-met-OP-=-\sqrt{13}-\beta-'n-skerphoek-NSC Technical Mathematics-Question 3-2021-Paper 1.png

In die diagram hieronder is P(3 ; m) 'n punt op 'n Kartesiese vlak met OP = \sqrt{13} \beta 'n skerphoek. Bepaal, SONDERVER die gebruik van 'n sakrekenaar, die num... show full transcript

Worked Solution & Example Answer:In die diagram hieronder is P(3 ; m) 'n punt op 'n Kartesiese vlak met OP = \sqrt{13} \beta 'n skerphoek - NSC Technical Mathematics - Question 3 - 2021 - Paper 1

Step 1

3.1.1 m

96%

114 rated

Answer

To find the value of m, we can use the Pythagorean theorem:

132=(3)2+(m)2\sqrt{13}^2 = (3)^2 + (m)^2

This simplifies to:

13=9+m213 = 9 + m^2

Rearranging gives:

m2=139=4m^2 = 13 - 9 = 4

Taking the square root:

m=4=2m = \sqrt{4} = 2

Step 2

3.1.2 sec^2 \beta + tan^2 \beta

99%

104 rated

Answer

We use the following identities:

sec2β=1+tan2βsec^2 \beta = 1 + tan^2 \beta

Substituting the known values:

sec2β+tan2β=(1+tan2β)+tan2β=1+2tan2βsec^2 \beta + tan^2 \beta = (1 + tan^2 \beta) + tan^2 \beta = 1 + 2tan^2 \beta

Using the triangle's information to find \tan \beta: If we have:

tanβ=oppositeadjacent=133tan \beta = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{13}}{3}

Thus:

tan2β=(133)2=139tan^2 \beta = \left(\frac{\sqrt{13}}{3}\right)^2 = \frac{13}{9}

Now substituting back:

sec2β+tan2β=1+2×139=1+269=9+269=359sec^2 \beta + tan^2 \beta = 1 + 2 \times \frac{13}{9} = 1 + \frac{26}{9} = \frac{9 + 26}{9} = \frac{35}{9}

Step 3

3.2.1 Die grootte van \theta

96%

101 rated

Answer

Given that \cos 0 = \frac{1}{2}, we find that:

θ=60\theta = 60^\circ

Step 4

3.2.2 Die grootte van \alpha

98%

120 rated

Answer

Since \tan \alpha = -1:

This occurs at \alpha = 135^\circ \text{ (in the second quadrant)}. Hence the value of \alpha is:

α=135\alpha = 135^\circ

Step 5

3.2.3 Die waarde van \cos (\alpha - \theta)

97%

117 rated

Answer

Using the values of \alpha and \theta:

cos(αθ)=cos(13560)=cos(75)\cos(\alpha - \theta) = \cos(135^\circ - 60^\circ) = \cos(75^\circ)

Using the known value:

cos(75)=624\cos(75^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}

Step 6

3.3 Los op vir x:

97%

121 rated

Answer

We start with:

2tanx+0.924=02 \tan x + 0.924 = 0

This simplifies to:

tanx=0.9242=0.462\tan x = -\frac{0.924}{2} = -0.462

To find x, we take the arctangent:

x=tan1(0.462)x = \tan^{-1}(-0.462)

The reference angle is found to be:

x24.8x \approx 24.8^\circ

Now considering the range \in [0^\circ ; 360^\circ]:

x=180+24.8=204.8x = 180^\circ + 24.8^\circ = 204.8^\circ

and also:

x=36024.8=335.2x = 360^\circ - 24.8^\circ = 335.2^\circ

Final solutions are:

x155 or x335x \approx 155^\circ \text{ or } x \approx 335^\circ

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;