Photo AI

Die diagram hieronder stel twee waarnemers by P en Q voor wat ewe ver van punt R is - NSC Technical Mathematics - Question 6 - 2022 - Paper 2

Question icon

Question 6

Die-diagram-hieronder-stel-twee-waarnemers-by-P-en-Q-voor-wat-ewe-ver-van-punt-R-is-NSC Technical Mathematics-Question 6-2022-Paper 2.png

Die diagram hieronder stel twee waarnemers by P en Q voor wat ewe ver van punt R is. Die twee waarnemers is 481,1 m van mekaar af. Die waarnemers sien 'n lugball... show full transcript

Worked Solution & Example Answer:Die diagram hieronder stel twee waarnemers by P en Q voor wat ewe ver van punt R is - NSC Technical Mathematics - Question 6 - 2022 - Paper 2

Step 1

6.1 Die grootte van ∠PQR

96%

114 rated

Answer

To determine the angle ∠PQR, we use the property that the sum of angles in a triangle equals 180°:

PQR+33,9°+33,9°=180°∠PQR + 33,9° + 33,9° = 180°

Solving for ∠PQR gives us:

PQR=180°33,9°33,9°=112,2°∠PQR = 180° - 33,9° - 33,9° = 112,2°

Step 2

6.2 RQ, die afstand tussen die waarnemer by Q en punt R

99%

104 rated

Answer

We can use the Law of Sines to find RQ.
Using the angle from step 6.1:

RQ=481,1sin33,9°sin112,2°RQ = \frac{481,1}{\sin{33,9°}} \cdot \sin{112,2°}

Calculating gives:

RQ=289,81mRQ = 289,81 m

Step 3

6.3 Die waarde van h, tot die naaste meter

96%

101 rated

Answer

We can find h using the tangent function from angle ∠SQR:

tan23,5°=h289,81\tan{23,5°} = \frac{h}{289,81}

Rearranging for h gives:

h=289,81tan23,5°h = 289,81 \cdot \tan{23,5°}

Calculating gives us:

h126mh \approx 126 m

Step 4

6.4 Die oppervlakte van △QPR

98%

120 rated

Answer

To find the area of triangle QPR, we can use the formula:

Area=12baseheightArea = \frac{1}{2} \cdot base \cdot height

Using base RQ and height h, we have:

Area=12481,1289,81sin112°Area = \frac{1}{2} \cdot 481,1 \cdot 289,81 \cdot \sin{112°}

Calculating this results in:

Area382,88m2Area \approx 382,88 m^2

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;