Photo AI
Question 2
Dengue is a serious disease that is caused by a virus. The virus is carried from one person to another by a mosquito, Aedes aegypti. One method used to try to reduce... show full transcript
Step 1
Answer
The Sterile Insect Technique (SIT) can reduce the transmission of dengue by introducing large numbers of sterile male Aedes aegypti into the population. These sterile males compete for mates with fertile males, but since they are sterile, they do not reproduce. As a result, the overall population of mosquitoes declines due to a reduction in successful mating, leading to fewer offspring and ultimately reducing the number of mosquitoes capable of transmitting the dengue virus.
Step 2
Answer
To use the mark-release-recapture method, researchers first capture a sample of Aedes aegypti mosquitoes and mark them with a non-toxic identifier. After marking, they release the mosquitoes and allow them some time to disperse and interbreed. Later, a second sample is captured, and the number of marked mosquitoes within this second sample is recorded. The population of A. aegypti can be estimated using the formula:
ext{Population} = rac{ ext{Number in first sample} imes ext{Number in second sample}}{ ext{Number marked in second sample}}
Step 3
Answer
One reason the release of radiation-sterilized A. aegypti has not been very successful is that radiation may impair their mating abilities or survival, meaning fewer sterile males are able to effectively compete for mates or live long enough to mate.
Step 4
Answer
Scientists likely released more transgenic males every week to maintain a sufficient population of these mosquitoes in the habitat, ensuring continued competition with the fertile males. This consistent release also helps counteract the natural death rate of mosquitoes in the population, ensuring the control measures remain effective.
Step 5
Answer
The results in Figure 2 support the conclusion by demonstrating a marked decline in the population of Aedes aegypti mosquitoes in the treated area after the release of transgenic males. If the number of mosquitoes was significantly lower compared to untreated areas over time, it suggests that the introduction of sterile males was effective in reducing overall mosquito numbers and thereby decreasing the potential for dengue transmission.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Biological Molecules: Carbohydrates
Biology - AQA
Biological Molecules: Proteins
Biology - AQA
Proteins: Enzymes
Biology - AQA
Nucleic Acids: Structure & DNA Replication
Biology - AQA
ATP, Water & Inorganic Ions
Biology - AQA
Cell Structure
Biology - AQA
The Microscope in Cell Studies
Biology - AQA
Cell Division in Eukaryotic & Prokaryotic Cells
Biology - AQA
Cell Membranes & Transport
Biology - AQA
Cell Recognition & the Immune System
Biology - AQA
Vaccines, Disease & Monoclonal Antibodies
Biology - AQA
Adaptations for Gas Exchange
Biology - AQA
Human Gas Exchange
Biology - AQA
Mass Transport in Animals
Biology - AQA
The Circulatory System in Animals
Biology - AQA
Mass Transport in Plants
Biology - AQA
DNA, Genes & Chromosomes
Biology - AQA
DNA & Protein Synthesis
Biology - AQA
Genetic Diversity: Mutations & Meiosis
Biology - AQA
Genetic Diversity & Adaptation
Biology - AQA
Species & Taxonomy
Biology - AQA
Biodiversity
Biology - AQA
Photosynthesis
Biology - AQA
Respiration
Biology - AQA
Energy & Ecosystems
Biology - AQA
Nutrient Cycles
Biology - AQA
Response to Stimuli
Biology - AQA
Nervous Coordination
Biology - AQA
Skeletal Muscles
Biology - AQA
Homeostasis
Biology - AQA
Inheritance
Biology - AQA
Populations
Biology - AQA
Evolution
Biology - AQA
Populations in Ecosystems
Biology - AQA
Genetic Mutations
Biology - AQA
Regulation of Gene Expression
Biology - AQA
Gene Technologies
Biology - AQA
1.1 Carbohydrates
Biology - AQA
1.2 Lipids
Biology - AQA
1.3 Proteins
Biology - AQA
1.4 Proteins: Enzymes
Biology - AQA
1.5 Nucleic Acids: Structure & DNA Replication
Biology - AQA
1.6 ATP, Water & Inorganic Ions
Biology - AQA
2.1 Cell Structure
Biology - AQA
2.3 Cell Division in Eukaryotic & Prokaryotic Cells
Biology - AQA
2.4 Cell Membranes & Transport
Biology - AQA
2.5 Cell Recognition & the Immune System
Biology - AQA
2.6 Vaccines, Disease & Monoclonal Antibodies
Biology - AQA
3.1 Adaptations for Gas Exchange
Biology - AQA
3.2 Human Gas Exchange
Biology - AQA
3.3 Digestion & Absorption
Biology - AQA
3.4 Mass Transport in Animals
Biology - AQA
3.5 The Circulatory System in Animals
Biology - AQA
3.6 Mass Transport in Plants
Biology - AQA
4.1 DNA, Genes & Chromosomes
Biology - AQA
4.2 DNA & Protein Synthesis
Biology - AQA
4.3 Genetic Diversity: Mutations & Meiosis
Biology - AQA
4.4 Genetic Diversity & Adaptation
Biology - AQA
4.5 Species & Taxonomy
Biology - AQA
4.6 Biodiversity
Biology - AQA
5.1 Photosynthesis (A Level only)
Biology - AQA
5.2 Respiration (A Level only)
Biology - AQA
5.3 Energy & Ecosystems (A Level only)
Biology - AQA
5.4 Nutrient Cycles (A Level only)
Biology - AQA
6.1 Response to Stimuli (A Level only)
Biology - AQA
6.2 Nervous Coordination (A Level only)
Biology - AQA
6.3 Skeletal Muscles (A Level only)
Biology - AQA
6.4 Homeostasis (A Level only)
Biology - AQA
7.1 Inheritance (A Level only)
Biology - AQA
7.2 Populations (A Level only)
Biology - AQA
7.3 Evolution (A Level only)
Biology - AQA
7.4 Populations in Ecosystems (A Level only)
Biology - AQA
8.1 Genetic Mutations (A Level only)
Biology - AQA
8.2 Regulation of Gene Expression (A Level only)
Biology - AQA
8.3 Using Genome Projects (A Level only)
Biology - AQA
8.4 Gene Technologies (A Level only)
Biology - AQA
Risk Assessment Masterlist
Biology - AQA
Investigating Cell Membrane Permeability
Biology - AQA
Dissection
Biology - AQA
Aseptic Techniques
Biology - AQA
Chromatography of Photosynthetic Pigments
Biology - AQA
Dehydrogenase Activity in Chloroplasts
Biology - AQA
Respiration in Single-Celled Organisms
Biology - AQA
Measuring Concentration of Glucose using a Calibration Curve
Biology - AQA
Effect of Different Variables on Species Distribution
Biology - AQA