Photo AI
Question 3
Yeast cells can respire aerobically or anaerobically. A student used the apparatus shown in Figure 3 to measure the rate of respiration in yeast. She: - positioned ... show full transcript
Step 1
Answer
This is crucial to ensure that the yeast culture is fully acclimatized to the constant temperature, which allows for stable and accurate measurement of the respiration rate.
Step 2
Answer
The movement of the coloured liquid to the right indicates that carbon dioxide was being produced as a by-product of cellular respiration. As yeast metabolizes the glucose present in the culture, it releases carbon dioxide, which increases the pressure in the apparatus, causing the liquid to move.
Step 3
Answer
To calculate the volume of gas produced, we use the formula for the volume of a cylinder:
The area of the capillary tubing's cross-section (lumen) is calculated as:
A = rac{ ext{π} d^2}{4} = rac{3.14 imes (0.1 ext{ cm})^2}{4} = 0.00785 ext{ cm}^2
Then, since the liquid moved 1.5 cm in 24 hours:
To find the volume produced per hour:
ext{Volume per hour} = rac{0.011775 ext{ cm}^3}{24 ext{ hours}} imes 60 ext{ minutes} = 0.0294 ext{ cm}^3 ext{ hour}^{-1}
Step 4
Answer
A log scale is utilized to accommodate the exponential growth patterns observed in population studies. This makes it easier to visualize large ranges of cell numbers and highlight the relative changes in population size over time, particularly during rapid growth phases.
Step 5
Step 6
Answer
Using the equation:
where:
We calculate:
Substituting :
Thus, the predicted size of the population after 10 hours is approximately 296820 yeast cells.
Report Improved Results
Recommend to friends
Students Supported
Questions answered
Biological Molecules: Carbohydrates
Biology - AQA
Biological Molecules: Proteins
Biology - AQA
Proteins: Enzymes
Biology - AQA
Nucleic Acids: Structure & DNA Replication
Biology - AQA
ATP, Water & Inorganic Ions
Biology - AQA
Cell Structure
Biology - AQA
The Microscope in Cell Studies
Biology - AQA
Cell Division in Eukaryotic & Prokaryotic Cells
Biology - AQA
Cell Membranes & Transport
Biology - AQA
Cell Recognition & the Immune System
Biology - AQA
Vaccines, Disease & Monoclonal Antibodies
Biology - AQA
Adaptations for Gas Exchange
Biology - AQA
Human Gas Exchange
Biology - AQA
Mass Transport in Animals
Biology - AQA
The Circulatory System in Animals
Biology - AQA
Mass Transport in Plants
Biology - AQA
DNA, Genes & Chromosomes
Biology - AQA
DNA & Protein Synthesis
Biology - AQA
Genetic Diversity: Mutations & Meiosis
Biology - AQA
Genetic Diversity & Adaptation
Biology - AQA
Species & Taxonomy
Biology - AQA
Biodiversity
Biology - AQA
Photosynthesis
Biology - AQA
Respiration
Biology - AQA
Energy & Ecosystems
Biology - AQA
Nutrient Cycles
Biology - AQA
Response to Stimuli
Biology - AQA
Nervous Coordination
Biology - AQA
Skeletal Muscles
Biology - AQA
Homeostasis
Biology - AQA
Inheritance
Biology - AQA
Populations
Biology - AQA
Evolution
Biology - AQA
Populations in Ecosystems
Biology - AQA
Genetic Mutations
Biology - AQA
Regulation of Gene Expression
Biology - AQA
Gene Technologies
Biology - AQA
1.1 Carbohydrates
Biology - AQA
1.2 Lipids
Biology - AQA
1.3 Proteins
Biology - AQA
1.4 Proteins: Enzymes
Biology - AQA
1.5 Nucleic Acids: Structure & DNA Replication
Biology - AQA
1.6 ATP, Water & Inorganic Ions
Biology - AQA
2.1 Cell Structure
Biology - AQA
2.3 Cell Division in Eukaryotic & Prokaryotic Cells
Biology - AQA
2.4 Cell Membranes & Transport
Biology - AQA
2.5 Cell Recognition & the Immune System
Biology - AQA
2.6 Vaccines, Disease & Monoclonal Antibodies
Biology - AQA
3.1 Adaptations for Gas Exchange
Biology - AQA
3.2 Human Gas Exchange
Biology - AQA
3.3 Digestion & Absorption
Biology - AQA
3.4 Mass Transport in Animals
Biology - AQA
3.5 The Circulatory System in Animals
Biology - AQA
3.6 Mass Transport in Plants
Biology - AQA
4.1 DNA, Genes & Chromosomes
Biology - AQA
4.2 DNA & Protein Synthesis
Biology - AQA
4.3 Genetic Diversity: Mutations & Meiosis
Biology - AQA
4.4 Genetic Diversity & Adaptation
Biology - AQA
4.5 Species & Taxonomy
Biology - AQA
4.6 Biodiversity
Biology - AQA
5.1 Photosynthesis (A Level only)
Biology - AQA
5.2 Respiration (A Level only)
Biology - AQA
5.3 Energy & Ecosystems (A Level only)
Biology - AQA
5.4 Nutrient Cycles (A Level only)
Biology - AQA
6.1 Response to Stimuli (A Level only)
Biology - AQA
6.2 Nervous Coordination (A Level only)
Biology - AQA
6.3 Skeletal Muscles (A Level only)
Biology - AQA
6.4 Homeostasis (A Level only)
Biology - AQA
7.1 Inheritance (A Level only)
Biology - AQA
7.2 Populations (A Level only)
Biology - AQA
7.3 Evolution (A Level only)
Biology - AQA
7.4 Populations in Ecosystems (A Level only)
Biology - AQA
8.1 Genetic Mutations (A Level only)
Biology - AQA
8.2 Regulation of Gene Expression (A Level only)
Biology - AQA
8.3 Using Genome Projects (A Level only)
Biology - AQA
8.4 Gene Technologies (A Level only)
Biology - AQA
Risk Assessment Masterlist
Biology - AQA
Investigating Cell Membrane Permeability
Biology - AQA
Dissection
Biology - AQA
Aseptic Techniques
Biology - AQA
Chromatography of Photosynthetic Pigments
Biology - AQA
Dehydrogenase Activity in Chloroplasts
Biology - AQA
Respiration in Single-Celled Organisms
Biology - AQA
Measuring Concentration of Glucose using a Calibration Curve
Biology - AQA
Effect of Different Variables on Species Distribution
Biology - AQA