Photo AI

A curve C has parametric equations $$ x = 2 \, ext{sin} \, t, \, y = 1 - ext{cos} \, 2t \quad \left( -\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \right) $$ (a) Find \( \frac{dy}{dx} \) at the point where \( t = \frac{\pi}{6} \) (b) Find a cartesian equation for C in the form \( y = f(x), \ -k \leq x \leq k, \) stating the value of the constant k - Edexcel - A-Level Maths Pure - Question 6 - 2013 - Paper 9

Question icon

Question 6

A-curve-C-has-parametric-equations--$$-x-=-2-\,--ext{sin}-\,-t,-\,-y-=-1----ext{cos}-\,-2t-\quad-\left(--\frac{\pi}{2}-\leq-t-\leq-\frac{\pi}{2}-\right)-$$--(a)-Find-\(-\frac{dy}{dx}-\)-at-the-point-where-\(-t-=-\frac{\pi}{6}-\)--(b)-Find-a-cartesian-equation-for-C-in-the-form-\(-y-=-f(x),-\--k-\leq-x-\leq-k,-\)-stating-the-value-of-the-constant-k-Edexcel-A-Level Maths Pure-Question 6-2013-Paper 9.png

A curve C has parametric equations $$ x = 2 \, ext{sin} \, t, \, y = 1 - ext{cos} \, 2t \quad \left( -\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \right) $$ (a) Find... show full transcript

Worked Solution & Example Answer:A curve C has parametric equations $$ x = 2 \, ext{sin} \, t, \, y = 1 - ext{cos} \, 2t \quad \left( -\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \right) $$ (a) Find \( \frac{dy}{dx} \) at the point where \( t = \frac{\pi}{6} \) (b) Find a cartesian equation for C in the form \( y = f(x), \ -k \leq x \leq k, \) stating the value of the constant k - Edexcel - A-Level Maths Pure - Question 6 - 2013 - Paper 9

Step 1

Find \( \frac{dy}{dx} \) at the point where \( t = \frac{\pi}{6} \)

96%

114 rated

Answer

To find ( \frac{dy}{dx} ), we will first calculate ( \frac{dx}{dt} ) and ( \frac{dy}{dt} ).

  1. Differentiate ( x = 2 \text{sin} , t ): dxdt=2cost\frac{dx}{dt} = 2 \cos t

  2. Differentiate ( y = 1 - \text{cos} , 2t ): dydt=2sin2t\frac{dy}{dt} = 2 \sin 2t

  3. Substitute these into ( \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} ): dydx=2sin2t2cost=sin2tcost\frac{dy}{dx} = \frac{2 \sin 2t}{2 \cos t} = \frac{\sin 2t}{\cos t}

  4. Now, substitute ( t = \frac{\pi}{6} ):

    • Calculate ( \sin 2 \left( \frac{\pi}{6} \right) = \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} )
    • Calculate ( \cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} )
  5. Thus: dydx=3232=1\frac{dy}{dx} = \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} = 1

Step 2

Find a cartesian equation for C in the form \( y = f(x), \ -k \leq x \leq k \) and state the value of the constant k.

99%

104 rated

Answer

We start from the parametric equations: x=2sint    sint=x2x = 2 \sin t \implies \sin t = \frac{x}{2}

Substituting this into the equation for y: y=1cos2ty = 1 - \text{cos} \, 2t Using the double angle formula: cos2t=12sin2t\text{cos} \, 2t = 1 - 2\sin^2 t

Substituting ( \sin t ): cos2t=12(x2)2=1x22\text{cos} \, 2t = 1 - 2\left( \frac{x}{2} \right)^2 = 1 - \frac{x^2}{2}

Thus: y=1(1x22)=x22y = 1 - \left( 1 - \frac{x^2}{2} \right) = \frac{x^2}{2}

The resulting Cartesian equation is: y=x22y = \frac{x^2}{2}

To find the range of x, given ( -\frac{\pi}{2} \leq t \leq \frac{\pi}{2} ):

  • At ( t = -\frac{\pi}{2}, x = 2 \sin \left( -\frac{\pi}{2} \right) = -2 )
  • At ( t = \frac{\pi}{2}, x = 2 \sin \left( \frac{\pi}{2} \right) = 2 )

Thus, ( k = 2 ) and the range is ( -2 \leq x \leq 2 ).

Step 3

Write down the range of \( f(x) \).

96%

101 rated

Answer

To find the range of ( f(x) = \frac{x^2}{2} ):

  • Since the minimum value of ( x^2 ) is 0 (when ( x = 0 )), the minimum value of ( f(x) ) is: f(0)=022=0f(0) = \frac{0^2}{2} = 0
  • The maximum value at ( x = \pm 2 ): f(2)=222=2f(2) = \frac{2^2}{2} = 2

Thus, the range of ( f(x) ) is: [0,2][0, 2]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;