Photo AI

a) y = 5^x + ext{log}(x + 1), ext{ } 0 ext{ } ext{ } ext{ } < x < 2 Complete the table below, by giving the value of y when x = 1 - Edexcel - A-Level Maths Pure - Question 4 - 2017 - Paper 3

Question icon

Question 4

a)-y-=-5^x-+--ext{log}(x-+-1),--ext{-}-0--ext{-}--ext{-}--ext{-}-<-x-<-2-Complete-the-table-below,-by-giving-the-value-of-y-when-x-=-1-Edexcel-A-Level Maths Pure-Question 4-2017-Paper 3.png

a) y = 5^x + ext{log}(x + 1), ext{ } 0 ext{ } ext{ } ext{ } < x < 2 Complete the table below, by giving the value of y when x = 1. x 0 0.5 1 1.5 2 y 1 ... show full transcript

Worked Solution & Example Answer:a) y = 5^x + ext{log}(x + 1), ext{ } 0 ext{ } ext{ } ext{ } < x < 2 Complete the table below, by giving the value of y when x = 1 - Edexcel - A-Level Maths Pure - Question 4 - 2017 - Paper 3

Step 1

Complete the table below, by giving the value of y when x = 1.

96%

114 rated

Answer

To find the value of y when x = 1, we substitute x = 1 into the equation:

y=51+extlog(1+1)y = 5^1 + ext{log}(1 + 1)

Calculating this gives:

= 5 + 0.301 = 5.301.$$ So, we complete the table with y = 5.301 when x = 1.

Step 2

Use the trapezium rule, with all the values of y from the completed table, to find an approximate value for \int_0^2 (5^x + \text{log}(x + 1)) dx.

99%

104 rated

Answer

The trapezium rule states:

T=ba2n[f(a)+2i=1n1f(xi)+f(b)]T = \frac{b - a}{2n} [f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b)]

Here, we have n = 4 (subintervals between x = 0 and x = 2) with y values: 1, 2.821, 5.301, 12.502, and 26.585.

Calculating:

=28(1+2(2.821+5.301+12.502)+26.585) =0.25[1+2(20.624)+26.585] =0.25[1+41.248+26.585] =0.25[68.833] =17.20825.Thus,theapproximateintegralvalueis17.21(to2decimalplaces).= \frac{2}{8} (1 + 2(2.821 + 5.301 + 12.502) + 26.585) \ = 0.25 [1 + 2(20.624) + 26.585] \ = 0.25 [1 + 41.248 + 26.585] \ = 0.25 [68.833] \ = 17.20825. Thus, the approximate integral value is 17.21 (to 2 decimal places).

Step 3

Use your answer to part (b) to find an approximate value for \int_0^2 (5 + 5^x + \text{log}(x + 1)) dx.

96%

101 rated

Answer

To solve \int_0^2 (5 + 5^x + \text{log}(x + 1)) dx:

We can break this down:

\int_0^2 5 , dx + \int_0^2 5^x , dx + \int_0^2 \text{log}(x + 1) , dx.

  1. For \int_0^2 5 , dx: =5(x)02=5(20)=10.= 5(x) |_{0}^{2} = 5(2 - 0) = 10.

  2. For \int_0^2 5^x , dx: =5xln(5)02=5250ln(5)=251ln(5)=24ln(5).= \frac{5^x}{\ln(5)} |_{0}^{2} = \frac{5^2 - 5^0}{\ln(5)} = \frac{25 - 1}{\ln(5)} = \frac{24}{\ln(5)}. Approximating \ln(5) \approx 1.609: 241.60914.9.\approx \frac{24}{1.609} \approx 14.9.

  3. The last integral \int_0^2 \text{log}(x + 1) , dx is approximated as 17.21.

Combining:

10+14.9+17.2142.11.10 + 14.9 + 17.21 \approx 42.11.

Thus, our final result is approximately 42.11 (to 2 decimal places).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;