Photo AI

Figure 3 shows a sketch of the curve C with parametric equations $x = 4 \, ext{cos} \left( t + \frac{\pi}{6} \right), \quad y = 2 \text{sin} t, \quad 0 < t < 2\pi$ (a) Show that $x + y = 2\sqrt{3} \, \text{cos} \, t$ (b) Show that a cartesian equation of C is $(x + y)^2 + a y^2 = b$ where $a$ and $b$ are integers to be determined. - Edexcel - A-Level Maths Pure - Question 7 - 2014 - Paper 7

Question icon

Question 7

Figure-3-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-4-\,--ext{cos}-\left(-t-+-\frac{\pi}{6}-\right),-\quad-y-=-2-\text{sin}-t,-\quad-0-<-t-<-2\pi$--(a)-Show-that--$x-+-y-=-2\sqrt{3}-\,-\text{cos}-\,-t$--(b)-Show-that-a-cartesian-equation-of-C-is--$(x-+-y)^2-+-a-y^2-=-b$--where-$a$-and-$b$-are-integers-to-be-determined.-Edexcel-A-Level Maths Pure-Question 7-2014-Paper 7.png

Figure 3 shows a sketch of the curve C with parametric equations $x = 4 \, ext{cos} \left( t + \frac{\pi}{6} \right), \quad y = 2 \text{sin} t, \quad 0 < t < 2\pi$... show full transcript

Worked Solution & Example Answer:Figure 3 shows a sketch of the curve C with parametric equations $x = 4 \, ext{cos} \left( t + \frac{\pi}{6} \right), \quad y = 2 \text{sin} t, \quad 0 < t < 2\pi$ (a) Show that $x + y = 2\sqrt{3} \, \text{cos} \, t$ (b) Show that a cartesian equation of C is $(x + y)^2 + a y^2 = b$ where $a$ and $b$ are integers to be determined. - Edexcel - A-Level Maths Pure - Question 7 - 2014 - Paper 7

Step 1

Show that $x + y = 2\sqrt{3} \, \text{cos} \, t$

96%

114 rated

Answer

To show the relationship, we start from the parametric equations:

  1. Substitute xx:
    x=4cos(t+π6)x = 4 \text{cos}\left(t + \frac{\pi}{6}\right)

  2. Substitute for yy:
    y=2sinty = 2 \text{sin} \, t

  3. Now, consider: x+y=4cos(t+π6)+2sintx + y = 4 \text{cos}\left(t + \frac{\pi}{6}\right) + 2 \text{sin} \, t

  4. We can expand cos(t+π6)\text{cos}\left(t + \frac{\pi}{6}\right) using the cosine addition formula: cos(t+π6)=costcos(π6)sintsin(π6)\text{cos}\left(t + \frac{\pi}{6}\right) = \text{cos} \, t \text{cos}\left(\frac{\pi}{6}\right) - \text{sin} \, t \text{sin}\left(\frac{\pi}{6}\right)

  5. Knowing that cos(π6)=32\text{cos}\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} and sin(π6)=12\text{sin}\left(\frac{\pi}{6}\right) = \frac{1}{2}, we can write: cos(t+π6)=32cost12sint\text{cos}\left(t + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \text{cos} \, t - \frac{1}{2} \text{sin} \, t

  6. Therefore, substituting back: x+y=4(32cost12sint)+2sintx + y = 4 \left(\frac{\sqrt{3}}{2} \text{cos} \, t - \frac{1}{2} \text{sin} \, t\right) + 2 \text{sin} \, t

  7. Simplifying this: =23cost2sint+2sint= 2\sqrt{3} \text{cos} \, t - 2\text{sin} \, t + 2\text{sin} \, t =23cost= 2\sqrt{3} \text{cos} \, t

Thus, we have shown that:

x+y=23costx + y = 2\sqrt{3} \text{cos} \, t

Step 2

Show that a cartesian equation of C is $(x + y)^2 + a y^2 = b$

99%

104 rated

Answer

To determine the Cartesian equation of the given parametric equations:

  1. From earlier, we have: x+y=23costx + y = 2\sqrt{3} \text{cos} \, t

  2. Squaring both sides: (x+y)2=(23cost)2(x + y)^2 = (2\sqrt{3} \text{cos} \, t)^2 =12cos2t= 12 \text{cos}^2 \, t

  3. Using the identity cos2t=1sin2t\text{cos}^2 \, t = 1 - \text{sin}^2 \, t: =12(1sin2t)= 12(1 - \text{sin}^2 \, t) =1212sin2t= 12 - 12\text{sin}^2 \, t

  4. Substituting for yy: Knowing that y=2sinty = 2\text{sin} \, t, we see that: sint=y2\text{sin} \, t = \frac{y}{2}

  5. Therefore, substituting back yields: =1212(y2)2= 12 - 12\left(\frac{y}{2}\right)^2 =123y2= 12 - 3y^2

  6. Thus, we rearrange: (x+y)2+3y2=12(x + y)^2 + 3y^2 = 12

  7. If we let a=3a = 3 and b=12b = 12, we confirm that: (x+y)2+ay2=b(x + y)^2 + ay^2 = b

Thus, we have proven the Cartesian equation:

(x+y)2+3y2=12(x + y)^2 + 3y^2 = 12

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;