To calculate the variance Var(X), use the formula:
Var(X)=E(X2)−(E(X))2
First, we find E(X2):
E(X2)=∑xx2P(X=x)
Calculating:
=(−1)2⋅51+02⋅207+12⋅101+22⋅207+32⋅51
=1⋅51+0+101+4⋅207+9⋅51
Calculating each term:
=51+0+101+2028+59
Converting 59 and 51 to a tenths denominator:
=102+0+1+14+18=1035=3.5
Now, substituting back into the variance formula:
Var(X)=E(X2)−(E(X))2=3.5−(3.1)2=3.5−9.61=2.21.