Photo AI

Last Updated Sep 27, 2025

Logarithmic Forms of Inverse Hyperbolic Functions Simplified Revision Notes

Revision notes with simplified explanations to understand Logarithmic Forms of Inverse Hyperbolic Functions quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

244+ students studying

4.1.2 Logarithmic Forms of Inverse Hyperbolic Functions

Understanding Inverse Hyperbolic Functions

The inverse hyperbolic functions (sinh1x,cosh1x,tanh1x\sinh^{-1} x, \cosh^{-1} x, \tanh^{-1} x) can be expressed in logarithmic form. These expressions are useful for solving equations and evaluating inverse hyperbolic functions. The derivations rely on the definitions of the hyperbolic functions and the properties of exponential functions.

Deriving Logarithmic Forms

Inverse Hyperbolic Sine (sinh1x\sinh^{-1} x):

Let y=sinh1xy = \sinh^{-1} x, so x=sinhyx = \sinh y.

Using the definition of sinhy\sinh y:

x=eyey2x = \frac{e^y - e^{-y}}{2}

Multiply through by 22:

2x=eyey2x = e^y - e^{-y}

Rewrite as a quadratic in eye^y:

(ey)22xey1=0(e^y)^2 - 2xe^y - 1 = 0

Solve using the quadratic formula:

ey=x+x2+1e^y = x + \sqrt{x^2 + 1}

Take the natural logarithm:

y=ln(x+x2+1)y = \ln(x + \sqrt{x^2 + 1})

Thus:

sinh1x=ln(x+x2+1)\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})

Inverse Hyperbolic Cosine (cosh1x\cosh^{-1} x):

Let y=cosh1xy = \cosh^{-1} x, so x=coshyx = \cosh y

Using the definition of coshy\cosh y:

x=ey+ey2x = \frac{e^y + e^{-y}}{2}

Multiply through by 22:

2x=ey+ey2x = e^y + e^{-y}

Rewrite as a quadratic in eye^y:

(ey)22xey+1=0(e^y)^2 - 2xe^y + 1 = 0

Solve using the quadratic formula:

ey=x+x21e^y = x + \sqrt{x^2 - 1}

Take the natural logarithm:

y=ln(x+x21)y = \ln(x + \sqrt{x^2 - 1})

Thus:

cosh1x=ln(x+x21),x1\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), \quad x \geq 1

Inverse Hyperbolic Tangent (tanh1x\tanh^{-1} x):

Let y=tanh1xy = \tanh^{-1} x, so x=tanhyx = \tanh y.

Using the definition of tanhy\tanh y:

x=sinhycoshy=eyeyey+eyx = \frac{\sinh y}{\cosh y} = \frac{e^y - e^{-y}}{e^y + e^{-y}}

Multiply through by ey+eye^y + e^{-y}:

x(ey+ey)=eyeyx(e^y + e^{-y}) = e^y - e^{-y}

Combine terms:

(1x)ey=(1+x)ey(1 - x)e^y = (1 + x)e^{-y}

Divide through by eye^{-y}:

(1x)e2y=1+x(1 - x)e^{2y} = 1 + x

Solve for e2ye^{2y}:

e2y=1+x1xe^{2y} = \frac{1 + x}{1 - x}

Take the natural logarithm:

2y=ln(1+x1x)2y = \ln\left(\frac{1 + x}{1 - x}\right)

Thus:

tanh1x=12ln(1+x1x),x<1\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right), \quad |x| < 1

Summary of Logarithmic Forms

sinh1x=ln(x+x2+1)\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}) cosh1x=ln(x+x21),x1\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), \quad x \geq 1 tanh1x=12ln(1+x1x),x<1\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right), \quad |x| < 1

Worked Examples

infoNote

Example 1:

Evaluate sinh1(2)\sinh^{-1}(2)


Using the formula:

sinh1(x)=ln(x+x2+1)\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})

substitute x=2x = 2:

sinh1(2)=ln(2+22+1)=ln(2+5)\sinh^{-1}(2) = \ln(2 + \sqrt{2^2 + 1}) = \ln(2 + \sqrt{5})

Approximate 5:highlight[2.236]\sqrt{5} \approx :highlight[2.236]

sinh1(2)ln(2+2.236)=ln(4.236):highlight[1.446]\sinh^{-1}(2) \approx \ln(2 + 2.236) = \ln(4.236) \approx :highlight[1.446]
infoNote

Example 2:

Solve cosh1(5)\cosh^{-1}(5)


Using the formula:

cosh1(x)=ln(x+x21)\cosh^{-1}(x) = \ln(x + \sqrt{x^2 - 1})

substitute x=5x = 5:

cosh1(5)=ln(5+521)=ln(5+24)\cosh^{-1}(5) = \ln(5 + \sqrt{5^2 - 1}) = \ln(5 + \sqrt{24})

Approximate 24:highlight[4.899]\sqrt{24} \approx :highlight[4.899]

cosh1(5)ln(5+4.899)=ln(9.899):highlight[2.293]\cosh^{-1}(5) \approx \ln(5 + 4.899) = \ln(9.899) \approx :highlight[2.293]
infoNote

Example 3:

Solve tanh1(0.5)\tanh^{-1}(0.5)


Using the formula:

tanh1(x)=12ln(1+x1x)\tanh^{-1}(x) = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right)

substitute x=0.5x = 0.5:

tanh1(0.5)=12ln(1+0.510.5)=12ln(1.50.5)\tanh^{-1}(0.5) = \frac{1}{2} \ln\left(\frac{1 + 0.5}{1 - 0.5}\right) = \frac{1}{2} \ln\left(\frac{1.5}{0.5}\right)

Simplify:

tanh1(0.5)=12ln(3)121.099:highlight[0.549]\tanh^{-1}(0.5) = \frac{1}{2} \ln(3) \approx \frac{1}{2} \cdot 1.099 \approx :highlight[0.549]

Note Summary

infoNote

Common Mistakes:

  1. Mixing up formulas for sinh1x\sinh^{-1} x and cosh1x\cosh^{-1} x Remember that cosh1x \cosh^{-1} x involves x21\sqrt{x^2 - 1}, not x2+1\sqrt{x^2 + 1}

  2. Misapplying the domain restrictions. For cosh1x,x1\cosh^{-1} x, x \geq 1; for tanh1x,x<1\tanh^{-1} x, ∣x∣<1

  3. Arithmetic errors when simplifying square roots. Always calculate carefully when substituting values.

  4. Forgetting logarithmic properties during derivation or simplification. Ensure correct application of ln(a×b)=lna+lnb\ln(a \times b) = \ln a + \ln b

infoNote

Key Formulas:

  1. sinh1x=ln(x+x2+1)\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})
  2. cosh1x=ln(x+x21),x1\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), \quad x \geq 1
  3. tanh1x=12ln(1+x1x),x<1\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right), \quad |x| < 1
  4. Domains:
  • sinh1x:xR\sinh^{-1} x: x \in \mathbb{R}
  • cosh1x:x1\cosh^{-1} x: x \geq 1
  • tanh1x:x<1\tanh^{-1} x: |x| < 1
Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Logarithmic Forms of Inverse Hyperbolic Functions

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

30 flashcards

Flashcards on Logarithmic Forms of Inverse Hyperbolic Functions

Revise key concepts with interactive flashcards.

Try Further Maths Core Pure Flashcards

3 quizzes

Quizzes on Logarithmic Forms of Inverse Hyperbolic Functions

Test your knowledge with fun and engaging quizzes.

Try Further Maths Core Pure Quizzes

29 questions

Exam questions on Logarithmic Forms of Inverse Hyperbolic Functions

Boost your confidence with real exam questions.

Try Further Maths Core Pure Questions

27 exams created

Exam Builder on Logarithmic Forms of Inverse Hyperbolic Functions

Create custom exams across topics for better practice!

Try Further Maths Core Pure exam builder

50 papers

Past Papers on Logarithmic Forms of Inverse Hyperbolic Functions

Practice past papers to reinforce exam experience.

Try Further Maths Core Pure Past Papers

Other Revision Notes related to Logarithmic Forms of Inverse Hyperbolic Functions you should explore

Discover More Revision Notes Related to Logarithmic Forms of Inverse Hyperbolic Functions to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Hyperbolic Functions

Hyperbolic Functions & Graphs

user avatar
user avatar
user avatar
user avatar
user avatar

297+ studying

190KViews

96%

114 rated

Hyperbolic Functions

Differentiating & Integrating Hyperbolic Functions

user avatar
user avatar
user avatar
user avatar
user avatar

341+ studying

187KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered