Photo AI

Solve the equation $x^2 - 2x - 4 = 0$ - Junior Cycle Mathematics - Question 9 - 2017

Question icon

Question 9

Solve-the-equation-$x^2---2x---4-=-0$-Junior Cycle Mathematics-Question 9-2017.png

Solve the equation $x^2 - 2x - 4 = 0$. Give your answers in the form $\alpha \pm \sqrt{\beta}$, where $\alpha, \beta \in \mathbb{N}$. Given that $\sqrt{a}^2 = d$, m... show full transcript

Worked Solution & Example Answer:Solve the equation $x^2 - 2x - 4 = 0$ - Junior Cycle Mathematics - Question 9 - 2017

Step 1

Solve the equation $x^2 - 2x - 4 = 0$

96%

114 rated

Answer

To solve the quadratic equation x22x4=0x^2 - 2x - 4 = 0, we can use the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

In this case, a=1a = 1, b=2b = -2, and c=4c = -4.

Calculating the discriminant:

b24ac=(2)24(1)(4)=4+16=20b^2 - 4ac = (-2)^2 - 4(1)(-4) = 4 + 16 = 20

Now substituting the values into the formula:

x=(2)±202(1)x = \frac{-(-2) \pm \sqrt{20}}{2(1)}

This simplifies to:

x=2±202x = \frac{2 \pm \sqrt{20}}{2}

Further simplification gives:

x=1±5x = 1 \pm \sqrt{5}

Thus, the solutions are x=1+5x = 1 + \sqrt{5} and x=15x = 1 - \sqrt{5}.

Step 2

Given that $\sqrt{a}^2 = d$, multiply out and simplify $(c + \sqrt{a})^2$

99%

104 rated

Answer

To simplify (c+a)2(c + \sqrt{a})^2, we use the expansion for the square of a binomial:

(c+a)2=c2+2ca+(a)2(c + \sqrt{a})^2 = c^2 + 2c \sqrt{a} + \left(\sqrt{a}\right)^2

Since (a)2=a\left(\sqrt{a}\right)^2 = a, we can rewrite the expression as:

c2+2ca+ac^2 + 2c \sqrt{a} + a

Step 3

Complete the table with the given numbers

96%

101 rated

Answer

NumberN\mathbb{N}Z\mathbb{Z}Q\mathbb{Q}RQ\mathbb{R} \setminus \mathbb{Q}
16YesYesYesNo
6\sqrt{6}NoNoYesYes
2YesYesYesNo
-4NoYesYesNo

Join the Junior Cycle students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;