Photo AI

In the diagram $ riangle EGF$ is such that $ riangle EGF = 129^ heta$, |EG| = 8$ and |FG| = 10 - Junior Cycle Mathematics - Question 5 - 2012

Question icon

Question 5

In-the-diagram-$-riangle-EGF$-is-such-that-$-riangle-EGF-=-129^-heta$,-|EG|-=-8$-and-|FG|-=-10-Junior Cycle Mathematics-Question 5-2012.png

In the diagram $ riangle EGF$ is such that $ riangle EGF = 129^ heta$, |EG| = 8$ and |FG| = 10. Calculate the area of the triangle $EFG$, giving your answer correc... show full transcript

Worked Solution & Example Answer:In the diagram $ riangle EGF$ is such that $ riangle EGF = 129^ heta$, |EG| = 8$ and |FG| = 10 - Junior Cycle Mathematics - Question 5 - 2012

Step 1

Calculate the area of the triangle EFG

96%

114 rated

Answer

To find the area of triangle EFGEFG, we use the formula:

A=12×b×h×sin(C)A = \frac{1}{2} \times b \times h \times \sin(C)

Where:

  • b=EG=8b = |EG| = 8,
  • h=FG=10h = |FG| = 10,
  • C=129hetaC = 129^ heta

Substituting the values:

A=12×8×10×sin(129heta)A = \frac{1}{2} \times 8 \times 10 \times \sin(129^ heta)

First, we find extsin(129heta) ext{sin}(129^ heta). Using a calculator, we find:

Now substituting this into the area formula: $$A = \frac{1}{2} \times 8 \times 10 \times 0.847 \approx 33.88$$ Thus, the area is approximately: $$A \approx 33.9 \, ext{square units (to one decimal place)}$$

Step 2

Calculate (i) |AB|, leaving your answer in surd form

99%

104 rated

Answer

Given that angle ABCABC is a right angle, we can apply the Pythagorean theorem:

AB2=AC2+BC2|AB|^2 = |AC|^2 + |BC|^2

Substituting the lengths:

AB2=(222)2+(33)2|AB|^2 = \left(\frac{2\sqrt{2}}{2}\right)^2 + \left(\frac{3}{\sqrt{3}}\right)^2

Calculating each term:

  • AC2=2224=2|AC|^2 = \frac{2^2 \cdot 2}{4} = 2
  • BC2=323=3|BC|^2 = \frac{3^2}{3} = 3

Thus,

AB2=2+3=5|AB|^2 = 2 + 3 = 5

Taking the square root,

AB=5|AB| = \sqrt{5}

Step 3

Calculate (ii) |$ heta ABC|$, correct to the nearest degree

96%

101 rated

Answer

Using the sine rule for riangleABC riangle ABC, we know:

tanθ=oppositeadjacent=ACBC\tan\theta = \frac{opposite}{adjacent} = \frac{|AC|}{|BC|}

Substituting the values:

tanθ=22233\tan\theta = \frac{\frac{2\sqrt{2}}{2}}{\frac{3}{\sqrt{3}}}

First simplifying:

tanθ=233=233=63\tan\theta = \frac{\sqrt{2}}{\frac{3}{\sqrt{3}}} = \frac{\sqrt{2} \cdot \sqrt{3}}{3} = \frac{\sqrt{6}}{3}

Now, taking the inverse tangent:

θ=tan1(63)28.6heta\theta = \tan^{-1}\left(\frac{\sqrt{6}}{3}\right) \approx 28.6^ heta

Rounding to the nearest degree gives:

θ29heta\theta \approx 29^ heta

Join the Junior Cycle students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;