Photo AI

Marginal Costing Agnew Ltd manufactures a single product - Leaving Cert Accounting - Question 8 - 2010

Question icon

Question 8

Marginal-Costing--Agnew-Ltd-manufactures-a-single-product-Leaving Cert Accounting-Question 8-2010.png

Marginal Costing Agnew Ltd manufactures a single product. The following is the proposed annual budget for the coming year: Sales (40,000 units) ... show full transcript

Worked Solution & Example Answer:Marginal Costing Agnew Ltd manufactures a single product - Leaving Cert Accounting - Question 8 - 2010

Step 1

Calculate the selling price per unit.

96%

114 rated

Answer

To find the selling price per unit, we divide total sales by the number of units sold:

Selling Price per Unit=Total SalesUnits Sold=480,00040,000=12.00\text{Selling Price per Unit} = \frac{\text{Total Sales}}{\text{Units Sold}} = \frac{480,000}{40,000} = €12.00

Step 2

Calculate the variable cost per unit.

99%

104 rated

Answer

The variable cost per unit is calculated by dividing the total variable costs by the number of units sold:

Variable Cost per Unit=Total Variable CostsUnits Sold=160,00040,000=4.00\text{Variable Cost per Unit} = \frac{\text{Total Variable Costs}}{\text{Units Sold}} = \frac{160,000}{40,000} = €4.00

Step 3

Calculate the Contribution from each unit sold.

96%

101 rated

Answer

The contribution per unit can be calculated by subtracting the variable cost per unit from the selling price per unit:

Contribution per Unit=Selling PriceVariable Cost=12.004.00=8.00\text{Contribution per Unit} = \text{Selling Price} - \text{Variable Cost} = €12.00 - €4.00 = €8.00

Step 4

Calculate the Break-even point in volume (units) and the sales value (€) (at break even point).

98%

120 rated

Answer

To determine the break-even point in units, we use the formula:

Break-even Point (Units)=Fixed CostsContribution per Unit=64,0008=8,000 units\text{Break-even Point (Units)} = \frac{\text{Fixed Costs}}{\text{Contribution per Unit}} = \frac{64,000}{8} = 8,000 \text{ units}

The sales value at the break-even point is:

Sales Value=Break-even Point (Units)×Selling Price=8,000×12=96,000\text{Sales Value} = \text{Break-even Point (Units)} \times \text{Selling Price} = 8,000 \times 12 = €96,000

Step 5

Calculate the margin of safety in units and sales value, if the budgeted sales for the period are 40,000 units.

97%

117 rated

Answer

The margin of safety is calculated using the formula:

Margin of Safety (Units)=Budgeted SalesBreak-even Sales=40,0008,000=32,000 units\text{Margin of Safety (Units)} = \text{Budgeted Sales} - \text{Break-even Sales} = 40,000 - 8,000 = 32,000 \text{ units}

For sales value:

Sales Value=Margin of Safety (Units)×Selling Price=32,000×12=384,000\text{Sales Value} = \text{Margin of Safety (Units)} \times \text{Selling Price} = 32,000 \times €12 = €384,000

Step 6

Calculate the level of production that will yield a profit of €120,000.

97%

121 rated

Answer

To find the level of production needed for a profit of €120,000, we use the formula:

Total Required Sales=Fixed Costs+Target ProfitContribution per Unit\text{Total Required Sales} = \frac{\text{Fixed Costs} + \text{Target Profit}}{\text{Contribution per Unit}}

Substituting the values:

Total Required Sales=64,000+120,0008=184,0008=23,000 units\text{Total Required Sales} = \frac{64,000 + 120,000}{8} = \frac{184,000}{8} = 23,000 \text{ units}

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;