Photo AI

If \( \frac{dy}{dx} = 3 \sin 3x + \cos 5x \) and \( y = 1 \) when \( x = \frac{\pi}{2} \), find the value of \( y \) when \( x = \frac{\pi}{4} \) - Leaving Cert Applied Maths - Question 10 - 2018

Question icon

Question 10

If-\(-\frac{dy}{dx}-=-3-\sin-3x-+-\cos-5x-\)-and-\(-y-=-1-\)-when-\(-x-=-\frac{\pi}{2}-\),-find-the-value-of-\(-y-\)-when-\(-x-=-\frac{\pi}{4}-\)-Leaving Cert Applied Maths-Question 10-2018.png

If \( \frac{dy}{dx} = 3 \sin 3x + \cos 5x \) and \( y = 1 \) when \( x = \frac{\pi}{2} \), find the value of \( y \) when \( x = \frac{\pi}{4} \). Give your answer c... show full transcript

Worked Solution & Example Answer:If \( \frac{dy}{dx} = 3 \sin 3x + \cos 5x \) and \( y = 1 \) when \( x = \frac{\pi}{2} \), find the value of \( y \) when \( x = \frac{\pi}{4} \) - Leaving Cert Applied Maths - Question 10 - 2018

Step 1

Find the value of \( y \) when \( x = \frac{\pi}{4} \)

96%

114 rated

Answer

To find the value of ( y ) given ( \frac{dy}{dx} = 3 \sin 3x + \cos 5x ), we start by integrating this expression:

dy=(3sin3x+cos5x)dx\int dy = \int (3 \sin 3x + \cos 5x) \, dx

This results in:

y=cos3x+sin5x5+C y = -\cos 3x + \frac{\sin 5x}{5} + C

Next, we need to find the constant ( C ) using the initial condition ( y = 1 ) when ( x = \frac{\pi}{2} ):

1=cos(3π2)+sin(5π2)5+C 1 = -\cos(3 \cdot \frac{\pi}{2}) + \frac{\sin(5 \cdot \frac{\pi}{2})}{5} + C

Calculating this gives:

1=0+15+CC=115=45 1 = 0 + \frac{1}{5} + C \Rightarrow C = 1 - \frac{1}{5} = \frac{4}{5}

Now substituting ( C ) back into the equation:

y=cos3x+sin5x5+45 y = -\cos 3x + \frac{\sin 5x}{5} + \frac{4}{5}

Finally, we find ( y ) at ( x = \frac{\pi}{4} ):

  • Calculate ( -\cos(\frac{3\pi}{4}) = -\left(-\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2} )
  • Calculate ( \sin(\frac{5\pi}{4}) = -\frac{\sqrt{2}}{2} )

Thus,

y=22210+45=0.63 (to 2 decimal places) y = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{10} + \frac{4}{5} = 0.63 \text{ (to 2 decimal places)}

Step 2

If initially the population is \( P \) people, find in terms of \( n, P \) and \( t \), the population after \( t \) years.

99%

104 rated

Answer

From the given rate of change of population:

dxdt=x40n \frac{dx}{dt} = -\frac{x}{40} - n

This can be rearranged to:

40dxdt+x=40n 40 \frac{dx}{dt} + x = -40n

Now integratin gives:

dxx+40n=dt40 \int \frac{dx}{x + 40n} = -\int \frac{dt}{40}

Therefore:

ln(x40n)=t40+C \ln(x - 40n) = -\frac{t}{40} + C

Exponentiating both sides leads to:

x40n=Cet/40 x - 40n = Ce^{-t/40}

Substituting for the initial condition when ( t = 0, x = P):

P40n=CightarrowC=P40n P - 40n = C ightarrow C = P - 40n

Thus the formula becomes:

x=(P40n)et/40+40n x = (P - 40n)e^{-t/40} + 40n

Step 3

Given that \( n = 800 \) and \( P = 30000 \), find the value of \( t \) when the population is 29734.

96%

101 rated

Answer

Substituting ( n = 800 ) and ( P = 30000 ) into the derived formula results in:

x=(3000032000)et/40+32000 x = (30000 - 32000)e^{-t/40} + 32000

That simplifies to:

x=2000et/40+32000 x = -2000 e^{-t/40} + 32000

We are given ( x = 29734 ):

29734=2000et/40+32000 29734 = -2000 e^{-t/40} + 32000

Rearranging gives:

2000et/40=2973432000 -2000 e^{-t/40} = 29734 - 32000 2000et/40=2266ightarrowet/40=22662000 -2000 e^{-t/40} = -2266 ightarrow e^{-t/40} = \frac{2266}{2000}

Taking the natural logarithm:

t40=ln(1.133) -\frac{t}{40} = \ln(1.133)

Therefore:

t=40ln(1.133)extwhichevaluatesto4.99extyears. t = -40 \ln(1.133) ext{ which evaluates to } 4.99 ext{ years.}

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;