SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home Leaving Cert Applied Maths Differential Equations If \( \frac{dy}{dx} = 3 \sin 3x + \cos 5x \) and \( y = 1 \) when \( x = \frac{\pi}{2} \), find the value of \( y \) when \( x = \frac{\pi}{4} \)
If \( \frac{dy}{dx} = 3 \sin 3x + \cos 5x \) and \( y = 1 \) when \( x = \frac{\pi}{2} \), find the value of \( y \) when \( x = \frac{\pi}{4} \) - Leaving Cert Applied Maths - Question 10 - 2018 Question 10
View full question If \( \frac{dy}{dx} = 3 \sin 3x + \cos 5x \) and \( y = 1 \) when \( x = \frac{\pi}{2} \), find the value of \( y \) when \( x = \frac{\pi}{4} \).
Give your answer c... show full transcript
View marking scheme Worked Solution & Example Answer:If \( \frac{dy}{dx} = 3 \sin 3x + \cos 5x \) and \( y = 1 \) when \( x = \frac{\pi}{2} \), find the value of \( y \) when \( x = \frac{\pi}{4} \) - Leaving Cert Applied Maths - Question 10 - 2018
Find the value of \( y \) when \( x = \frac{\pi}{4} \) Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find the value of ( y ) given ( \frac{dy}{dx} = 3 \sin 3x + \cos 5x ), we start by integrating this expression:
∫ d y = ∫ ( 3 sin 3 x + cos 5 x ) d x \int dy = \int (3 \sin 3x + \cos 5x) \, dx ∫ d y = ∫ ( 3 sin 3 x + cos 5 x ) d x
This results in:
y = − cos 3 x + sin 5 x 5 + C y = -\cos 3x + \frac{\sin 5x}{5} + C y = − cos 3 x + 5 sin 5 x + C
Next, we need to find the constant ( C ) using the initial condition ( y = 1 ) when ( x = \frac{\pi}{2} ):
1 = − cos ( 3 ⋅ π 2 ) + sin ( 5 ⋅ π 2 ) 5 + C 1 = -\cos(3 \cdot \frac{\pi}{2}) + \frac{\sin(5 \cdot \frac{\pi}{2})}{5} + C 1 = − cos ( 3 ⋅ 2 π ) + 5 sin ( 5 ⋅ 2 π ) + C
Calculating this gives:
1 = 0 + 1 5 + C ⇒ C = 1 − 1 5 = 4 5 1 = 0 + \frac{1}{5} + C \Rightarrow C = 1 - \frac{1}{5} = \frac{4}{5} 1 = 0 + 5 1 + C ⇒ C = 1 − 5 1 = 5 4
Now substituting ( C ) back into the equation:
y = − cos 3 x + sin 5 x 5 + 4 5 y = -\cos 3x + \frac{\sin 5x}{5} + \frac{4}{5} y = − cos 3 x + 5 sin 5 x + 5 4
Finally, we find ( y ) at ( x = \frac{\pi}{4} ):
Calculate ( -\cos(\frac{3\pi}{4}) = -\left(-\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2} )
Calculate ( \sin(\frac{5\pi}{4}) = -\frac{\sqrt{2}}{2} )
Thus,
y = 2 2 − 2 10 + 4 5 = 0.63 (to 2 decimal places) y = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{10} + \frac{4}{5} = 0.63 \text{ (to 2 decimal places)} y = 2 2 − 10 2 + 5 4 = 0.63 (to 2 decimal places)
If initially the population is \( P \) people, find in terms of \( n, P \) and \( t \), the population after \( t \) years. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
From the given rate of change of population:
d x d t = − x 40 − n \frac{dx}{dt} = -\frac{x}{40} - n d t d x = − 40 x − n
This can be rearranged to:
40 d x d t + x = − 40 n 40 \frac{dx}{dt} + x = -40n 40 d t d x + x = − 40 n
Now integratin gives:
∫ d x x + 40 n = − ∫ d t 40 \int \frac{dx}{x + 40n} = -\int \frac{dt}{40} ∫ x + 40 n d x = − ∫ 40 d t
Therefore:
ln ( x − 40 n ) = − t 40 + C \ln(x - 40n) = -\frac{t}{40} + C ln ( x − 40 n ) = − 40 t + C
Exponentiating both sides leads to:
x − 40 n = C e − t / 40 x - 40n = Ce^{-t/40} x − 40 n = C e − t /40
Substituting for the initial condition when ( t = 0, x = P):
P − 40 n = C i g h t a r r o w C = P − 40 n P - 40n = C
ightarrow C = P - 40n P − 40 n = C i g h t a rro wC = P − 40 n
Thus the formula becomes:
x = ( P − 40 n ) e − t / 40 + 40 n x = (P - 40n)e^{-t/40} + 40n x = ( P − 40 n ) e − t /40 + 40 n
Given that \( n = 800 \) and \( P = 30000 \), find the value of \( t \) when the population is 29734. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Substituting ( n = 800 ) and ( P = 30000 ) into the derived formula results in:
x = ( 30000 − 32000 ) e − t / 40 + 32000 x = (30000 - 32000)e^{-t/40} + 32000 x = ( 30000 − 32000 ) e − t /40 + 32000
That simplifies to:
x = − 2000 e − t / 40 + 32000 x = -2000 e^{-t/40} + 32000 x = − 2000 e − t /40 + 32000
We are given ( x = 29734 ):
29734 = − 2000 e − t / 40 + 32000 29734 = -2000 e^{-t/40} + 32000 29734 = − 2000 e − t /40 + 32000
Rearranging gives:
− 2000 e − t / 40 = 29734 − 32000 -2000 e^{-t/40} = 29734 - 32000 − 2000 e − t /40 = 29734 − 32000
− 2000 e − t / 40 = − 2266 i g h t a r r o w e − t / 40 = 2266 2000 -2000 e^{-t/40} = -2266
ightarrow e^{-t/40} = \frac{2266}{2000} − 2000 e − t /40 = − 2266 i g h t a rro w e − t /40 = 2000 2266
Taking the natural logarithm:
− t 40 = ln ( 1.133 ) -\frac{t}{40} = \ln(1.133) − 40 t = ln ( 1.133 )
Therefore:
t = − 40 ln ( 1.133 ) e x t w h i c h e v a l u a t e s t o 4.99 e x t y e a r s . t = -40 \ln(1.133) ext{ which evaluates to } 4.99 ext{ years.} t = − 40 ln ( 1.133 ) e x t w hi c h e v a l u a t es t o 4.99 e x t ye a rs . Join the Leaving Cert students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved