Photo AI

The external wall of a house of timber frame construction has the following specification: External layer Thickness 120 mm Concrete block outer leaf Thickness 100 mm Timber Strand Board (OSB) sheeting Thickness 18 mm Mineral wool insulation between studs Thickness 120 mm Plasterboard Thickness 12.5 mm Thermal data of outer leaf and cavity: Resistance of the external surface (R) = 0.0483 m²°C/W Resistivity of the concrete block Thickness (1): Conductivity of OSB sheeting (k) = 0.130 W/m°C Conductivity of mineral wool (k) = 0.040 W/m°C Conductivity of plasterboard (k) = 0.160 W/m°C Resistance of inner surface (R) = 0.104 m²°C/W Thermal data of inner leaf: Conductivity of OSB sheeting Conductivity of mineral wool Conductivity of plasterboard Resistance of the interior surface - Leaving Cert Construction Studies - Question 5 - 2016

Question icon

Question 5

The-external-wall-of-a-house-of-timber-frame-construction-has-the-following-specification:--External-layer-Thickness-120-mm-Concrete-block-outer-leaf-Thickness-100-mm-Timber-Strand-Board-(OSB)-sheeting-Thickness-18-mm-Mineral-wool-insulation-between-studs-Thickness-120-mm-Plasterboard-Thickness-12.5-mm--Thermal-data-of-outer-leaf-and-cavity:-Resistance-of-the-external-surface-(R)-=-0.0483-m²°C/W-Resistivity-of-the-concrete-block-Thickness-(1):-Conductivity-of-OSB-sheeting-(k)-=-0.130-W/m°C-Conductivity-of-mineral-wool-(k)-=-0.040-W/m°C-Conductivity-of-plasterboard-(k)-=-0.160-W/m°C-Resistance-of-inner-surface-(R)-=-0.104-m²°C/W--Thermal-data-of-inner-leaf:-Conductivity-of-OSB-sheeting-Conductivity-of-mineral-wool-Conductivity-of-plasterboard-Resistance-of-the-interior-surface-Leaving Cert Construction Studies-Question 5-2016.png

The external wall of a house of timber frame construction has the following specification: External layer Thickness 120 mm Concrete block outer leaf Thickness 100 m... show full transcript

Worked Solution & Example Answer:The external wall of a house of timber frame construction has the following specification: External layer Thickness 120 mm Concrete block outer leaf Thickness 100 mm Timber Strand Board (OSB) sheeting Thickness 18 mm Mineral wool insulation between studs Thickness 120 mm Plasterboard Thickness 12.5 mm Thermal data of outer leaf and cavity: Resistance of the external surface (R) = 0.0483 m²°C/W Resistivity of the concrete block Thickness (1): Conductivity of OSB sheeting (k) = 0.130 W/m°C Conductivity of mineral wool (k) = 0.040 W/m°C Conductivity of plasterboard (k) = 0.160 W/m°C Resistance of inner surface (R) = 0.104 m²°C/W Thermal data of inner leaf: Conductivity of OSB sheeting Conductivity of mineral wool Conductivity of plasterboard Resistance of the interior surface - Leaving Cert Construction Studies - Question 5 - 2016

Step 1

Calculate the U-value of the above external wall.

96%

114 rated

Answer

To calculate the U-value, we first need to find the total resistance of the wall. The U-value is then calculated as the reciprocal of the total resistance.

  1. Calculate the resistance of each layer:

    • External layer: Rext=tk=0.120 m2.170 W/m°C=0.0554 m²°C/WR_{ext} = \frac{t}{k} = \frac{0.120 \text{ m}}{2.170 \text{ W/m°C}} = 0.0554 \text{ m²°C/W}
    • Concrete block outer leaf: Rblock=0.100 m1.320 W/m°C=0.0758 m²°C/WR_{block} = \frac{0.100 \text{ m}}{1.320 \text{ W/m°C}} = 0.0758 \text{ m²°C/W}
    • OSB sheeting: Rosb=0.018 m0.130 W/m°C=0.1385 m²°C/WR_{osb} = \frac{0.018 \text{ m}}{0.130 \text{ W/m°C}} = 0.1385 \text{ m²°C/W}
    • Mineral wool insulation: Rwool=0.120 m0.040 W/m°C=3.0000 m²°C/WR_{wool} = \frac{0.120 \text{ m}}{0.040 \text{ W/m°C}} = 3.0000 \text{ m²°C/W}
    • Plasterboard: Rplaster=0.0125 m0.160 W/m°C=0.0781 m²°C/WR_{plaster} = \frac{0.0125 \text{ m}}{0.160 \text{ W/m°C}} = 0.0781 \text{ m²°C/W}
    • Internal surface: Rinternal=0.1040extm2°C/WR_{internal} = 0.1040 ext{ m²°C/W}
  2. Sum the resistances: Rtotal=Rext+Rblock+Rosb+Rwool+Rplaster+RinternalR_{total} = R_{ext} + R_{block} + R_{osb} + R_{wool} + R_{plaster} + R_{internal} Rtotal=0.0554+0.0758+0.1385+3.0000+0.0781+0.1040=3.4530extm2°C/WR_{total} = 0.0554 + 0.0758 + 0.1385 + 3.0000 + 0.0781 + 0.1040 = 3.4530 ext{ m²°C/W}

  3. Calculate the U-value: U=1Rtotal=13.45300.289extW/m2°CU = \frac{1}{R_{total}} = \frac{1}{3.4530} \approx 0.289 ext{ W/m²°C}

Step 2

Calculate the cost of the heat lost annually through the wall.

99%

104 rated

Answer

  1. Formula to calculate the heat loss: Q=UAΔTtQ = U \cdot A \cdot \Delta T \cdot t Where:

    • UU = U-value
    • AA = Area
    • ")ΔT"){\Delta T} = Temperature difference
    • tt = time (in hours)
  2. Given:

    • A=150 m²A = 150 \text{ m²}
    • Internal temperature = 18 °C
    • External temperature = 6 °C
    • Heating period = 60 days = 1440 hours
    • ΔT=186=12 °C\Delta T = 18 - 6 = 12\text{ °C}
  3. Substitute values into the formula: Q=0.289150121440Q = 0.289 \cdot 150 \cdot 12 \cdot 1440 Calculate to find QQ: Q6163680 WQ \approx 6163680 \text{ W}

  4. To convert Watts to kilojoules:

    • 1 W = 1 J/s = 3600 J/hr
    • QkJ=61636801000360022209000 kJQ_{kJ} = \frac{6163680}{1000} \cdot 3600 \approx 22209000 \text{ kJ}
  5. Cost calculation:

    • Calorific value of oil = 36,000 kJ per litre
    • Ch=2220900036000616.08 litres\text{Ch} = \frac{22209000}{36000} \approx 616.08 \text{ litres}
    • Cost = 1.10616.08678.691.10 \cdot 616.08 \approx €678.69

Step 3

Find thickness of expanded polystyrene required to give U-value of 0.15 W/m²°C.

96%

101 rated

Answer

  1. Calculate required resistance for a U-value of 0.15: Rrequired=10.15=6.6667 m²°C/WR_{required} = \frac{1}{0.15} = 6.6667\text{ m²°C/W}

  2. Current total resistance = 3.4530 m²°C/W, calculate additional resistance needed: Radditional=RrequiredRtotal=6.66673.4530=3.2137 m²°C/WR_{additional} = R_{required} - R_{total} = 6.6667 - 3.4530 = 3.2137 \text{ m²°C/W}

  3. Calculate thickness of expanded polystyrene, given conducting value k = 0.037: Reps=tepsk    teps=Repsk=3.21370.037R_{eps} = \frac{t_{eps}}{k} \implies t_{eps} = R_{eps} \cdot k = 3.2137 \cdot 0.037 Rearranging gives: teps=0.1198 m=119.8 mmt_{eps} = 0.1198 \text{ m} = 119.8 \text{ mm}

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;