Photo AI

The 3D graphic below shows a garden water feature in which three spheres rest on the ground and are in mutual contact - Leaving Cert DCG - Question A-2 - 2012

Question icon

Question A-2

The-3D-graphic-below-shows-a-garden-water-feature-in-which-three-spheres-rest-on-the-ground-and-are-in-mutual-contact-Leaving Cert DCG-Question A-2-2012.png

The 3D graphic below shows a garden water feature in which three spheres rest on the ground and are in mutual contact. The drawing on the right shows the plan and e... show full transcript

Worked Solution & Example Answer:The 3D graphic below shows a garden water feature in which three spheres rest on the ground and are in mutual contact - Leaving Cert DCG - Question A-2 - 2012

Step 1

Draw the elevation of sphere B.

96%

114 rated

Answer

To draw the elevation of sphere B, start by projecting the center point from the plan view of A and B. First, establish the diameter of sphere B, which is the same as the radius of sphere A due to their contact. Create a vertical line to represent the center of sphere B at the appropriate height, ensuring it is tangent to the other two spheres. Finally, complete the drawing by adding the outline of sphere B to show its full shape in elevation view.

Step 2

Draw the plan and elevation of the third sphere C.

99%

104 rated

Answer

In the plan view, position sphere C so that it is tangent to both spheres A and B. Begin by locating the center point of sphere C based on its radius, which is identical to the others for consistency. Proceed to draw its outline, ensuring its projections align with the centers of spheres A and B. In the elevation view, represent sphere C at the adjusted height, ensuring visibility of any hidden details. Use dashed lines to indicate parts of sphere C that are obscured by spheres A and B, ensuring a clear representation of the water feature's three-dimensional aspect.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;