Photo AI

Given that $f(x) = 6x - 5$ and $g(x) = \frac{x + 5}{6}$, we need to investigate if $f(g(x)) = g(f(x))$ - Leaving Cert Mathematics - Question 3 - 2020

Question icon

Question 3

Given-that-$f(x)-=-6x---5$-and-$g(x)-=-\frac{x-+-5}{6}$,-we-need-to-investigate-if-$f(g(x))-=-g(f(x))$-Leaving Cert Mathematics-Question 3-2020.png

Given that $f(x) = 6x - 5$ and $g(x) = \frac{x + 5}{6}$, we need to investigate if $f(g(x)) = g(f(x))$. 1. First, calculate $f(g(x))$: - Substitute $g(x)$ into $... show full transcript

Worked Solution & Example Answer:Given that $f(x) = 6x - 5$ and $g(x) = \frac{x + 5}{6}$, we need to investigate if $f(g(x)) = g(f(x))$ - Leaving Cert Mathematics - Question 3 - 2020

Step 1

Investigate if $f(g(x)) = g(f(x))$

96%

114 rated

Answer

Given that f(x)=6x5f(x) = 6x - 5 and g(x)=x+56g(x) = \frac{x + 5}{6}, we need to investigate if f(g(x))=g(f(x))f(g(x)) = g(f(x)).

  1. First, calculate f(g(x))f(g(x)):

    • Substitute g(x)g(x) into f(x)f(x): f(g(x))=f(x+56)=6(x+56)5 f(g(x)) = f\left(\frac{x + 5}{6}\right) = 6\left(\frac{x + 5}{6}\right) - 5
    • This simplifies to: f(g(x))=x+55=xf(g(x)) = x + 5 - 5 = x
  2. Now, calculate g(f(x))g(f(x)):

    • Substitute f(x)f(x) into g(x)g(x): g(f(x))=g(6x5)=(6x5)+56 g(f(x)) = g(6x - 5) = \frac{(6x - 5) + 5}{6}
    • This simplifies to: g(f(x))=6x6=xg(f(x)) = \frac{6x}{6} = x
  3. Since both evaluations yield xx, we find that: f(g(x))=g(f(x))=xf(g(x)) = g(f(x)) = x

Conclusion:

Therefore, f(g(x))=g(f(x))f(g(x)) = g(f(x)) is true.

Step 2

The equation $y = 5x^2$ can be rewritten in the form $\log_5 y = a + b \log_5 x$.

99%

104 rated

Answer

To convert, we can take logarithms:

  • First, take  extlog5\ ext{log}_5 of both sides: log5y=log5(5x2)\log_5 y = \log_5(5x^2)
  • Using log properties: log5y=log55+log5(x2)\log_5 y = \log_5 5 + \log_5(x^2)
  • This simplifies to: log5y=1+2log5x\log_5 y = 1 + 2 \log_5 x
  • Comparing with log5y=a+blog5x\log_5 y = a + b \log_5 x, we find that a=1a = 1 and b=2b = 2.

Values:

  • a=1a = 1
  • b=2b = 2

Step 3

Hence, or otherwise, find the real values of $y$ for which $\log_5 y = 2 + \log_5\left(\frac{126}{25} x - 1\right).$

96%

101 rated

Answer

  • Start by applying logarithm laws: log5y=log5(52)+log5(12625x1)\log_5 y = \log_5(5^2) + \log_5\left(\frac{126}{25}x - 1\right)
    • This can be simplified to: log5y=log5(25(12625x1))\log_5 y = \log_5\left(25\left(\frac{126}{25}x - 1\right)\right)
  • Hence, setting the arguments equal gives: y=25(12625x1)y = 25\left(\frac{126}{25}x - 1\right)
    • Further simplifying: y=126x25y = 126x - 25
    • To find values of yy: y=5x2=126x25y = 5x^2 = 126x - 25
    • Rearranging gives: 5x2126x+25=05x^2 - 126x + 25 = 0
  • Now, applying the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
    • Where:
    • a=5a = 5, b=126b = -126, c=25c = 25 gives: x=126±(126)2452525x = \frac{126 \pm \sqrt{(-126)^2 - 4 \cdot 5 \cdot 25}}{2 \cdot 5}
    • Thus solving the quadratic equation provides the values for xx, and substituting back calculates yy.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;