Photo AI

Write the function $f(x) = 2x^2 - 7x - 10$, where $x \in \mathbb{R}$, in the form $\alpha(x + h)^2 + k$, where $\alpha, h,$ and $k \in \mathbb{Q}$ - Leaving Cert Mathematics - Question 1 - 2017

Question icon

Question 1

Write-the-function-$f(x)-=-2x^2---7x---10$,-where-$x-\in-\mathbb{R}$,-in-the-form-$\alpha(x-+-h)^2-+-k$,-where-$\alpha,-h,$-and-$k-\in-\mathbb{Q}$-Leaving Cert Mathematics-Question 1-2017.png

Write the function $f(x) = 2x^2 - 7x - 10$, where $x \in \mathbb{R}$, in the form $\alpha(x + h)^2 + k$, where $\alpha, h,$ and $k \in \mathbb{Q}$. Hence, write t... show full transcript

Worked Solution & Example Answer:Write the function $f(x) = 2x^2 - 7x - 10$, where $x \in \mathbb{R}$, in the form $\alpha(x + h)^2 + k$, where $\alpha, h,$ and $k \in \mathbb{Q}$ - Leaving Cert Mathematics - Question 1 - 2017

Step 1

Write the function $f(x) = 2x^2 - 7x - 10$ in the form $\alpha(x + h)^2 + k$

96%

114 rated

Answer

To rewrite the function in the completed square form, we start with:

f(x)=2x27x10f(x) = 2x^2 - 7x - 10

First, factor out the 2 from the quadratic terms:

f(x)=2(x272x)10f(x) = 2(x^2 - \frac{7}{2}x) - 10

Next, complete the square for the expression inside the parentheses. We take half of the coefficient of xx, square it, and add and subtract it inside:

f(x)=2(x272x+(74)2(74)2)10f(x) = 2 \left( x^2 - \frac{7}{2}x + \left(\frac{7}{4}\right)^2 - \left(\frac{7}{4}\right)^2 \right) - 10

Simplifying further:

=2((x74)24916)10= 2 \left( \left( x - \frac{7}{4} \right)^2 - \frac{49}{16} \right) - 10

=2(x74)249810= 2 \left( x - \frac{7}{4} \right)^2 - \frac{49}{8} - 10

Now, convert -10 into eighths:

=2(x74)2498808= 2 \left( x - \frac{7}{4} \right)^2 - \frac{49}{8} - \frac{80}{8}

Finally, we have:

f(x)=2(x74)21298f(x) = 2 \left( x - \frac{7}{4} \right)^2 - \frac{129}{8}

Step 2

Hence, write the minimum point of $f$

99%

104 rated

Answer

The minimum point of the function occurs at the vertex of the parabola, which is given by the coordinates (74,1298)\left( \frac{7}{4}, -\frac{129}{8} \right). Therefore, the minimum point of ff is:

(74,1298)\left( \frac{7}{4}, -\frac{129}{8} \right)

Step 3

Explain why $f$ must have two real roots

96%

101 rated

Answer

For the function f(x)=2x27x10f(x) = 2x^2 - 7x - 10 to have two real roots, the discriminant of the quadratic must be greater than zero. The discriminant is given by:

D=b24acD = b^2 - 4ac

where a=2a = 2, b=7b = -7, and c=10c = -10. Thus:

D=(7)24(2)(10)=49+80=129>0D = (-7)^2 - 4(2)(-10) = 49 + 80 = 129 > 0

Since the discriminant is positive, ff has two distinct real roots.

Step 4

Write the roots of $f(x) = 0$ in the form $p \pm \sqrt{q}$

98%

120 rated

Answer

To find the roots of the quadratic equation, we set:

2x27x10=02x^2 - 7x - 10 = 0

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substituting the values of aa, bb, and cc:

x=7±1294x = \frac{7 \pm \sqrt{129}}{4}

Thus, the roots can be written in the form:

x=74±1294x = \frac{7}{4} \pm \frac{\sqrt{129}}{4}

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;