Photo AI

The function $f$ is such that $f(x) = 2x^3 + 5x^2 - 4x - 3$, where $x \in \mathbb{R}.$ (a) Show that $x = -3$ is a root of $f(x)$ and find the other two roots - Leaving Cert Mathematics - Question 5 - 2017

Question icon

Question 5

The-function-$f$-is-such-that-$f(x)-=-2x^3-+-5x^2---4x---3$,-where-$x-\in-\mathbb{R}.$--(a)-Show-that-$x-=--3$-is-a-root-of-$f(x)$-and-find-the-other-two-roots-Leaving Cert Mathematics-Question 5-2017.png

The function $f$ is such that $f(x) = 2x^3 + 5x^2 - 4x - 3$, where $x \in \mathbb{R}.$ (a) Show that $x = -3$ is a root of $f(x)$ and find the other two roots. (b)... show full transcript

Worked Solution & Example Answer:The function $f$ is such that $f(x) = 2x^3 + 5x^2 - 4x - 3$, where $x \in \mathbb{R}.$ (a) Show that $x = -3$ is a root of $f(x)$ and find the other two roots - Leaving Cert Mathematics - Question 5 - 2017

Step 1

Show that $x = -3$ is a root of $f(x)$ and find the other two roots.

96%

114 rated

Answer

To show that x=3x = -3 is a root, we substitute 3-3 into the function:

f(3)=2(3)3+5(3)24(3)3=2(27)+5(9)+123=54+45+123=0. f(-3) = 2(-3)^3 + 5(-3)^2 - 4(-3) - 3 = 2(-27) + 5(9) + 12 - 3 = -54 + 45 + 12 - 3 = 0.

Since f(3)=0f(-3) = 0, x=3x = -3 is indeed a root.

Next, we can factor f(x)f(x) using synthetic division:

f(x)=(x+3)(2x2x1). f(x) = (x + 3)(2x^2 - x - 1).

Now we find the other roots by solving the quadratic equation 2x2x1=02x^2 - x - 1 = 0 using the quadratic formula:

x=b±b24ac2a=1±(1)24(2)(1)2(2)=1±94=1±34. x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{(-1)^2 - 4(2)(-1)}}{2(2)} = \frac{1 \pm \sqrt{9}}{4} = \frac{1 \pm 3}{4}.

This yields:

  1. x=44=1x = \frac{4}{4} = 1
  2. x=24=12x = \frac{-2}{4} = -\frac{1}{2}.

Thus, the other two roots are x=1x = 1 and x=12x = -\frac{1}{2}.

Step 2

Find the co-ordinates of the local maximum point and the local minimum point of the function $f$.

99%

104 rated

Answer

To find the local extrema of the function, we first calculate its derivative:

y=2x3+5x24x3 dydx=6x2+10x4. y = 2x^3 + 5x^2 - 4x - 3 \ \frac{dy}{dx} = 6x^2 + 10x - 4.

Setting the derivative to zero to find critical points:

6x2+10x4=0 6x^2 + 10x - 4 = 0

Using the quadratic formula:

x=10±1024(6)(4)2(6)=10±100+9612=10±19612=10±1412. x = \frac{-10 \pm \sqrt{10^2 - 4(6)(-4)}}{2(6)} = \frac{-10 \pm \sqrt{100 + 96}}{12} = \frac{-10 \pm \sqrt{196}}{12} = \frac{-10 \pm 14}{12}.

This gives:

  1. x=412=13x = \frac{4}{12} = \frac{1}{3}
  2. x=2412=2x = \frac{-24}{12} = -2.

Next, we calculate the function values at these critical points:

For x=13x = \frac{1}{3}:

f(13)=2(13)3+5(13)24(13)3=2(127)+5(19)433. f\left(\frac{1}{3}\right) = 2\left(\frac{1}{3}\right)^3 + 5\left(\frac{1}{3}\right)^2 - 4\left(\frac{1}{3}\right) - 3 = 2\left(\frac{1}{27}\right) + 5\left(\frac{1}{9}\right) - \frac{4}{3} - 3.

Simplifying the above gives:

=227+152736278127=10027, = \frac{2}{27} + \frac{15}{27} - \frac{36}{27} - \frac{81}{27} = \frac{-100}{27},

Thus, the local maximum is at (2,10027)\left( -2, \frac{-100}{27} \right).

For x=2x = -2:

f(2)=2(2)3+5(2)24(2)3=16+20+83=9. f(-2) = 2(-2)^3 + 5(-2)^2 - 4(-2) - 3 = -16 + 20 + 8 - 3 = 9.

Thus, the local minimum is at (2,9)(-2, 9).

Step 3

Find the range of possible values of $a$.

96%

101 rated

Answer

For the equation f(x)+a=0f(x) + a = 0 to have only one real root, the function f(x)f(x) must touch the x-axis at one point. This occurs when the discriminant of the quadratic is zero:

b24ac=0.b^2 - 4ac = 0.

Given f(x)=2x3+5x24x3f(x) = 2x^3 + 5x^2 - 4x - 3, we observe that in order to determine the range of aa, we must consider the maximum and minimum points previously determined:

  • Maximum point value is 10027\frac{-100}{27}.
  • Minimum point value is 99.

Therefore, for f(x)+af(x) + a to only touch the x-axis:

a>10027 or a<9.a > \frac{100}{27} \text{ or } a < -9.

Hence, the range of possible values for aa is:

a>10027 or a<9.a > \frac{100}{27} \text{ or } a < -9.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;