Photo AI

The complex number z has modulus \( \frac{5}{3} \) and argument \( \frac{4\pi}{9} \) - Leaving Cert Mathematics - Question 3 - 2012

Question icon

Question 3

The-complex-number-z-has-modulus-\(-\frac{5}{3}-\)-and-argument-\(-\frac{4\pi}{9}-\)-Leaving Cert Mathematics-Question 3-2012.png

The complex number z has modulus \( \frac{5}{3} \) and argument \( \frac{4\pi}{9} \). (a) Find, in polar form, the four complex fourth roots of z. (That is, find th... show full transcript

Worked Solution & Example Answer:The complex number z has modulus \( \frac{5}{3} \) and argument \( \frac{4\pi}{9} \) - Leaving Cert Mathematics - Question 3 - 2012

Step 1

Find the polar form of z

96%

114 rated

Answer

Given that the modulus of z is ( r = \frac{5}{3} ) and the argument is ( \theta = \frac{4\pi}{9} ), we can express z in polar form:

[ z = r \left( \cos \theta + i \sin \theta \right) = \frac{5}{3} \left( \cos \left( \frac{4\pi}{9} \right) + i \sin \left( \frac{4\pi}{9} \right) \right) ]

Step 2

Calculate the fourth roots

99%

104 rated

Answer

To find the fourth roots, we use the formula for the roots of a complex number:

[ w_n = r^{1/4} \left( \cos \left( \frac{\theta + 2\pi n}{4} \right) + i \sin \left( \frac{\theta + 2\pi n}{4} \right) \right) ]

Here, ( r^{1/4} = \left( \frac{5}{3} \right)^{1/4} = \frac{5^{1/4}}{3^{1/4}} ), and ( \theta = \frac{4\pi}{9} ).

We proceed by calculating the four values for ( n = 0, 1, 2, 3 ):

  1. ( n = 0 ): [ w_0 = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{4\pi}{36} \right) + i \sin \left( \frac{4\pi}{36} \right) \right) = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{\pi}{9} \right) + i \sin \left( \frac{\pi}{9} \right) \right) ]

  2. ( n = 1 ): [ w_1 = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{10\pi}{36} \right) + i \sin \left( \frac{10\pi}{36} \right) \right) = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{5\pi}{18} \right) + i \sin \left( \frac{5\pi}{18} \right) \right) ]

  3. ( n = 2 ): [ w_2 = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{16\pi}{36} \right) + i \sin \left( \frac{16\pi}{36} \right) \right) = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{8\pi}{9} \right) + i \sin \left( \frac{8\pi}{9} \right) \right) ]

  4. ( n = 3 ): [ w_3 = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{22\pi}{36} \right) + i \sin \left( \frac{22\pi}{36} \right) \right) = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{11\pi}{18} \right) + i \sin \left( \frac{11\pi}{18} \right) \right) ]

Step 3

Graph the fourth roots on the Argand diagram

96%

101 rated

Answer

On the Argand diagram, each of the computed roots ( w_0, w_1, w_2, w_3 ) should be plotted based on their real and imaginary components. The positions will represent the angle and modulus of each root, visualizing their distribution around the origin in the complex plane.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;