Photo AI
Question 3
The complex number z has modulus \( \frac{5}{3} \) and argument \( \frac{4\pi}{9} \). (a) Find, in polar form, the four complex fourth roots of z. (That is, find th... show full transcript
Step 1
Answer
Given that the modulus of z is ( r = \frac{5}{3} ) and the argument is ( \theta = \frac{4\pi}{9} ), we can express z in polar form:
[ z = r \left( \cos \theta + i \sin \theta \right) = \frac{5}{3} \left( \cos \left( \frac{4\pi}{9} \right) + i \sin \left( \frac{4\pi}{9} \right) \right) ]
Step 2
Answer
To find the fourth roots, we use the formula for the roots of a complex number:
[ w_n = r^{1/4} \left( \cos \left( \frac{\theta + 2\pi n}{4} \right) + i \sin \left( \frac{\theta + 2\pi n}{4} \right) \right) ]
Here, ( r^{1/4} = \left( \frac{5}{3} \right)^{1/4} = \frac{5^{1/4}}{3^{1/4}} ), and ( \theta = \frac{4\pi}{9} ).
We proceed by calculating the four values for ( n = 0, 1, 2, 3 ):
( n = 0 ): [ w_0 = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{4\pi}{36} \right) + i \sin \left( \frac{4\pi}{36} \right) \right) = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{\pi}{9} \right) + i \sin \left( \frac{\pi}{9} \right) \right) ]
( n = 1 ): [ w_1 = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{10\pi}{36} \right) + i \sin \left( \frac{10\pi}{36} \right) \right) = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{5\pi}{18} \right) + i \sin \left( \frac{5\pi}{18} \right) \right) ]
( n = 2 ): [ w_2 = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{16\pi}{36} \right) + i \sin \left( \frac{16\pi}{36} \right) \right) = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{8\pi}{9} \right) + i \sin \left( \frac{8\pi}{9} \right) \right) ]
( n = 3 ): [ w_3 = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{22\pi}{36} \right) + i \sin \left( \frac{22\pi}{36} \right) \right) = \frac{5^{1/4}}{3^{1/4}} \left( \cos \left( \frac{11\pi}{18} \right) + i \sin \left( \frac{11\pi}{18} \right) \right) ]
Step 3
Answer
On the Argand diagram, each of the computed roots ( w_0, w_1, w_2, w_3 ) should be plotted based on their real and imaginary components. The positions will represent the angle and modulus of each root, visualizing their distribution around the origin in the complex plane.
Report Improved Results
Recommend to friends
Students Supported
Questions answered