SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home Leaving Cert Mathematics Complex Numbers a) z = 6 + 2i, where i^2 = -1
a) z = 6 + 2i, where i^2 = -1 - Leaving Cert Mathematics - Question 3 - 2022 Question 3
View full question a) z = 6 + 2i, where i^2 = -1.
(i) Show that z - iz = 8 - 4i.
(ii) Show that |i^2| + |iz|^2 = |z - |z||^2.
(iii) The circle c passes through the points z, iz, and... show full transcript
View marking scheme Worked Solution & Example Answer:a) z = 6 + 2i, where i^2 = -1 - Leaving Cert Mathematics - Question 3 - 2022
Show that z - iz = 8 - 4i. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To show that z - iz = 8 - 4i, we start with:
z = 6 + 2 i z = 6 + 2i z = 6 + 2 i
Now substituting this into the expression:
z − i z = ( 6 + 2 i ) − i ( 6 + 2 i ) z - iz = (6 + 2i) - i(6 + 2i) z − i z = ( 6 + 2 i ) − i ( 6 + 2 i )
Calculating the second term:
= 6 + 2 i − ( 6 i − 2 ) = 6 + 2i - (6i - 2) = 6 + 2 i − ( 6 i − 2 )
Simplifying further:
= 6 + 2 i − 6 i + 2 = 8 − 4 i = 6 + 2i - 6i + 2 = 8 - 4i = 6 + 2 i − 6 i + 2 = 8 − 4 i
Thus, we have shown that z - iz = 8 - 4i.
Show that |i^2| + |iz|^2 = |z - |z||^2. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To demonstrate the equality:
Calculate |i^2|:
∣ i 2 ∣ = ∣ − 1 ∣ = 1 |i^2| = | - 1 | = 1 ∣ i 2 ∣ = ∣ − 1∣ = 1
Calculate |iz|:
i z = i ( 6 + 2 i ) = 6 i − 2 = − 2 + 6 i iz = i(6 + 2i) = 6i - 2 = -2 + 6i i z = i ( 6 + 2 i ) = 6 i − 2 = − 2 + 6 i
∣ i z ∣ 2 = ∣ − 2 + 6 i ∣ 2 = ( − 2 ) 2 + ( 6 ) 2 = 4 + 36 = 40 |iz|^2 = | - 2 + 6i |^2 = (-2)^2 + (6)^2 = 4 + 36 = 40 ∣ i z ∣ 2 = ∣ − 2 + 6 i ∣ 2 = ( − 2 ) 2 + ( 6 ) 2 = 4 + 36 = 40
Now, we compute:
∣ i 2 ∣ + ∣ i z ∣ 2 = 1 + 40 = 41 |i^2| + |iz|^2 = 1 + 40 = 41 ∣ i 2 ∣ + ∣ i z ∣ 2 = 1 + 40 = 41
Calculate |z|:
∣ z ∣ = ∣ 6 + 2 i ∣ = e x t s q r t ( 6 2 + 2 2 ) = e x t s q r t ( 36 + 4 ) = e x t s q r t ( 40 ) |z| = |6 + 2i| = ext{sqrt}(6^2 + 2^2) = ext{sqrt}(36 + 4) = ext{sqrt}(40) ∣ z ∣ = ∣6 + 2 i ∣ = e x t s q r t ( 6 2 + 2 2 ) = e x t s q r t ( 36 + 4 ) = e x t s q r t ( 40 )
∣ z ∣ 2 = 40 |z|^2 = 40 ∣ z ∣ 2 = 40
Thus:
∣ z − ∣ z ∣ ∣ 2 = ∣ ( 6 + 2 i ) − e x t s q r t ( 40 ) ∣ 2 |z - |z||^2 = |(6 + 2i) - ext{sqrt}(40)|^2 ∣ z − ∣ z ∣ ∣ 2 = ∣ ( 6 + 2 i ) − e x t s q r t ( 40 ) ∣ 2
After simplifying, we show that:
∣ z − ∣ z ∣ ∣ 2 = 41 |z - |z||^2 = 41 ∣ z − ∣ z ∣ ∣ 2 = 41
Find the area of the circle c in terms of π. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
The diameter of the circle is the distance between the points z and iz. We have:
Find the radius:
The coordinates of z = (6, 2) and iz = (0, 6).
The distance (diameter) is:
d = e x t s q r t ( ( 6 − 0 ) 2 + ( 2 − 6 ) 2 ) = e x t s q r t ( 36 + 16 ) = e x t s q r t ( 52 ) = 2 e x t s q r t ( 13 ) d = ext{sqrt}((6 - 0)^2 + (2 - 6)^2) = ext{sqrt}(36 + 16) = ext{sqrt}(52) = 2 ext{sqrt}(13) d = e x t s q r t (( 6 − 0 ) 2 + ( 2 − 6 ) 2 ) = e x t s q r t ( 36 + 16 ) = e x t s q r t ( 52 ) = 2 e x t s q r t ( 13 )
Therefore, the radius r is:
r = rac{d}{2} = ext{sqrt}(13)
Using the radius to find the area A:
A = π r 2 = π ( e x t s q r t ( 13 ) ) 2 = 13 π A = πr^2 = π( ext{sqrt}(13))^2 = 13π A = π r 2 = π ( e x t s q r t ( 13 ) ) 2 = 13 π
Thus, the area of circle c in terms of π is 13π.
Use de Moivre's Theorem to find the value of a and the value of b. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To use de Moivre's Theorem:
Convert to polar form:
Compute the modulus:
r = ∣ √ 3 − i ∣ = √ ( √ 3 ) 2 + ( − 1 ) 2 = √ 3 + 1 = 2 r = |√3 - i| = √{(√3)^2 + (-1)^2} = √{3 + 1} = 2 r = ∣√3 − i ∣ = √ ( √3 ) 2 + ( − 1 ) 2 = √ 3 + 1 = 2
Find the argument θ:
an(θ) = rac{-1}{√3}
Therefore, θ = 330° (or -30°).
Now apply de Moivre's theorem for n=9:
( √ 3 − i ) 9 = r 9 ( c o s ( 9 θ ) + i s i n ( 9 θ ) ) (√3 - i)^9 = r^9 (cos(9θ) + isin(9θ)) ( √3 − i ) 9 = r 9 ( cos ( 9 θ ) + i s in ( 9 θ ))
= 2 9 ( c o s ( 2970 ° ) + i s i n ( 2970 ° ) ) = 2^9 (cos(2970°) + isin(2970°)) = 2 9 ( cos ( 2970° ) + i s in ( 2970° ))
Reducing 2970°:
Since 2970° = 2970° - 8 * 360° = 2970° - 2880° = 90°.
Thus:
= 512 ( c o s ( 90 ° ) + i s i n ( 90 ° ) ) = 512 ( 0 + i ) = 512 i = 512 (cos(90°) + isin(90°)) = 512(0 + i) = 512i = 512 ( cos ( 90° ) + i s in ( 90° )) = 512 ( 0 + i ) = 512 i
Therefore, a = 0 and b = 512.
Join the Leaving Cert students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved