Photo AI

Given: $z_1 = -2 + 3i$ and $z_2 = -3 - 2i$, where $i^2 = -1$ - Leaving Cert Mathematics - Question 2 - 2016

Question icon

Question 2

Given:--$z_1-=--2-+-3i$-and-$z_2-=--3---2i$,-where-$i^2-=--1$-Leaving Cert Mathematics-Question 2-2016.png

Given: $z_1 = -2 + 3i$ and $z_2 = -3 - 2i$, where $i^2 = -1$. Calculate $z_3 = z_1 - z_2$. (a) Plot $z_1$, $z_2$, and $z_3$ on the Argand Diagram. Label each poin... show full transcript

Worked Solution & Example Answer:Given: $z_1 = -2 + 3i$ and $z_2 = -3 - 2i$, where $i^2 = -1$ - Leaving Cert Mathematics - Question 2 - 2016

Step 1

Calculate $z_3 = z_1 - z_2$

96%

114 rated

Answer

To calculate z3z_3, we subtract z2z_2 from z1z_1:

z3=(2+3i)(32i)=2+3i+3+2i=(1+5i)\begin{align*} z_3 & = (-2 + 3i) - (-3 - 2i) \\ & = -2 + 3i + 3 + 2i \\ & = (1 + 5i) \end{align*}

Step 2

Plot $z_1$, $z_2$, and $z_3$ on the Argand Diagram

99%

104 rated

Answer

  1. Plot z1=2+3iz_1 = -2 + 3i: Position this point at coordinates (-2, 3).
  2. Plot z2=32iz_2 = -3 - 2i: Position this point at coordinates (-3, -2).
  3. Plot z3=1+5iz_3 = 1 + 5i: Position this point at coordinates (1, 5).

Ensure that all points are correctly labeled.

Step 3

Investigate if $|z_3| = |z_1| + |z_2|$

96%

101 rated

Answer

  1. Calculate z1|z_1|: z1=(2)2+32=4+9=13|z_1| = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}

  2. Calculate z2|z_2|: z2=(3)2+(2)2=9+4=13|z_2| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}

  3. Calculate z3|z_3|: z3=(1)2+52=1+25=26|z_3| = \sqrt{(1)^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26}

  4. Check the equality: z3=2613+13=213|z_3| = \sqrt{26} \neq \sqrt{13} + \sqrt{13} = 2\sqrt{13}

Conclusion: z3z1+z2|z_3| \neq |z_1| + |z_2|.

Step 4

Write $z_4 = \frac{z_1}{z_2}$ in the form $x + yi$

98%

120 rated

Answer

  1. Substituting in values: z4=2+3i32iz_4 = \frac{-2 + 3i}{-3 - 2i}

  2. Multiply by the conjugate of the denominator: z4=(2+3i)(3+2i)(32i)(3+2i)z_4 = \frac{(-2 + 3i)(-3 + 2i)}{(-3 - 2i)(-3 + 2i)} Simplifying:

    • The denominator becomes: (3)2(2i)2=9+4=13(-3)^2 - (2i)^2 = 9 + 4 = 13
    • The numerator: (2)(3)+(2)(2i)+(3i)(3)+(3i)(2i)=64i9i6=613i(-2)(-3) + (-2)(2i) + (3i)(-3) + (3i)(2i) = 6 - 4i - 9i - 6 = 6 - 13i
  3. Final expression: z4=613i13=613i1313=613iz_4 = \frac{6 - 13i}{13} = \frac{6}{13} - i\frac{13}{13} = \frac{6}{13} - i

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;