Photo AI

Prove, using induction, that if n is a positive integer then (cos θ + i sin θ)ⁿ = cos(nθ) + i sin(nθ), where i² = -1 - Leaving Cert Mathematics - Question 4 - 2018

Question icon

Question 4

Prove,-using-induction,-that-if-n-is-a-positive-integer-then-(cos-θ-+-i-sin-θ)ⁿ-=-cos(nθ)-+-i-sin(nθ),-where-i²-=--1-Leaving Cert Mathematics-Question 4-2018.png

Prove, using induction, that if n is a positive integer then (cos θ + i sin θ)ⁿ = cos(nθ) + i sin(nθ), where i² = -1. Hence, or otherwise, find (−\frac{1}{2} + \fra... show full transcript

Worked Solution & Example Answer:Prove, using induction, that if n is a positive integer then (cos θ + i sin θ)ⁿ = cos(nθ) + i sin(nθ), where i² = -1 - Leaving Cert Mathematics - Question 4 - 2018

Step 1

Step P(1)

96%

114 rated

Answer

To prove the base case, let n = 1:

(cosθ+isinθ)1=cos(θ)+isin(θ)(cos θ + i sin θ)^1 = cos(θ) + i sin(θ)

This holds true since both sides are equal.

Step 2

Step P(k)

99%

104 rated

Answer

Assume the hypothesis holds for n = k:

(cosθ+isinθ)k=cos(kθ)+isin(kθ)(cos θ + i sin θ)^k = cos(kθ) + i sin(kθ)

Step 3

Step P(k + 1)

96%

101 rated

Answer

Now, we must show that it holds for n = k + 1:

(cosθ+isinθ)k+1=(cosθ+isinθ)k(cosθ+isinθ)(cos θ + i sin θ)^{k+1} = (cos θ + i sin θ)^k (cos θ + i sin θ)

Using the assumption for k:

=(cos(kθ)+isin(kθ))(cosθ+isinθ)= (cos(kθ) + i sin(kθ))(cos θ + i sin θ)

Expanding using the distributive property gives:

=cos(kθ)cos(θ)sin(kθ)sin(θ)+i(sin(kθ)cos(θ)+cos(kθ)sin(θ))= cos(kθ)cos(θ) - sin(kθ)sin(θ) + i (sin(kθ)cos(θ) + cos(kθ)sin(θ))

This simplifies to:

=cos((k+1)θ)+isin((k+1)θ)= cos((k + 1)θ) + i sin((k + 1)θ)

Thus, the equation holds for k + 1.

Step 4

Conclusion

98%

120 rated

Answer

By the principle of mathematical induction, the proposition is true for all positive integers n.

Step 5

Find (−\frac{1}{2} + \frac{\sqrt{3}}{2} i)³

97%

117 rated

Answer

First, convert to polar form:

  1. Modulus:

r=(12)2+(32)2=1r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = 1

  1. Argument:

θ=tan1(3212)=2π3\theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \frac{2\pi}{3}

Thus,

12+32i=1(cos(2π3)+isin(2π3))-\frac{1}{2} + \frac{\sqrt{3}}{2} i = 1(cos(\frac{2\pi}{3}) + i sin(\frac{2\pi}{3}))

Using De Moivre's theorem:

(1(cos(2π3)+isin(2π3)))3=1(cos(2π)+isin(2π))=1(1(cos(\frac{2\pi}{3}) + i sin(\frac{2\pi}{3})))^3 = 1(cos(2\pi) + i sin(2\pi)) = 1

Therefore, in its simplest form:

=1= 1

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;