Photo AI

6. (a) Differentiate the function $(2x + 4)^2$ from first principles, with respect to $x$ - Leaving Cert Mathematics - Question 6 - 2016

Question icon

Question 6

6.-(a)-Differentiate-the-function-$(2x-+-4)^2$-from-first-principles,-with-respect-to-$x$-Leaving Cert Mathematics-Question 6-2016.png

6. (a) Differentiate the function $(2x + 4)^2$ from first principles, with respect to $x$. (b) (i) If $y = x \, ext{sin} \left( \frac{1}{x} \right)$, find $\frac{d... show full transcript

Worked Solution & Example Answer:6. (a) Differentiate the function $(2x + 4)^2$ from first principles, with respect to $x$ - Leaving Cert Mathematics - Question 6 - 2016

Step 1

Differentiate the function $(2x + 4)^2$ from first principles

96%

114 rated

Answer

To differentiate the function using first principles, we use the definition of the derivative:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Let ( f(x) = (2x + 4)^2 ).

Calculating ( f(x + h) ):
f(x+h)=(2(x+h)+4)2=(2x+2h+4)2=(2x+4)2+8h(2x+4)+4h2f(x + h) = (2(x + h) + 4)^2 = (2x + 2h + 4)^2 = (2x + 4)^2 + 8h(2x + 4) + 4h^2

Now substitute into the derivative formula:

f(x)=limh0(2x+4)2+8h(2x+4)+4h2(2x+4)2hf'(x) = \lim_{h \to 0} \frac{(2x + 4)^2 + 8h(2x + 4) + 4h^2 - (2x + 4)^2}{h}
This simplifies to:

f(x)=limh08h(2x+4)+4h2h=limh0(8(2x+4)+4h)f'(x) = \lim_{h \to 0} \frac{8h(2x + 4) + 4h^2}{h} = \lim_{h \to 0} (8(2x + 4) + 4h)
As ( h \to 0 ), this gives:

f(x)=8(2x+4)f'(x) = 8(2x + 4)
Therefore, the derivative is:
f(x)=16x+32f'(x) = 16x + 32.

Step 2

If $y = x \, ext{sin} \left( \frac{1}{x} \right)$, find $\frac{dy}{dx}$

99%

104 rated

Answer

To differentiate ( y = x \sin \left( \frac{1}{x} \right) ), we use the product rule:

Let ( u = x ) and ( v = \sin \left( \frac{1}{x} \right) ), then:

  1. ( u' = 1 )
  2. Differentiate ( v ) using chain rule:
    • First, differentiate ( \sin(u) ),\ with ( u = \frac{1}{x} ):
      v=cos(1x)ddx(1x)=cos(1x)(1x2)v' = \cos \left( \frac{1}{x} \right) \frac{d}{dx} \left( \frac{1}{x} \right) = \cos \left( \frac{1}{x} \right) \left( -\frac{1}{x^2} \right)

Now use the product rule:

dydx=uv+uv=1sin(1x)+x(1x2cos(1x))\frac{dy}{dx} = u'v + uv' = 1 \cdot \sin \left( \frac{1}{x} \right) + x \left( -\frac{1}{x^2} \cos \left( \frac{1}{x} \right) \right)
This simplifies to:

dydx=sin(1x)1xcos(1x)\frac{dy}{dx} = \sin \left( \frac{1}{x} \right) - \frac{1}{x} \cos \left( \frac{1}{x} \right).

Step 3

Find the slope of the tangent to the curve $y = x \, \text{sin} \left( \frac{1}{x} \right)$, when $x = \frac{4}{\pi}$

96%

101 rated

Answer

We can find the slope of the tangent by substituting ( x = \frac{4}{\pi} ) into our derivative:

The derivative is: dydx=sin(1x)1xcos(1x)\frac{dy}{dx} = \sin \left( \frac{1}{x} \right) - \frac{1}{x} \cos \left( \frac{1}{x} \right).

Substituting ( x = \frac{4}{\pi} ):
dydx=sin(π4)π4cos(π4)\frac{dy}{dx} = \sin \left( \frac{\pi}{4} \right) - \frac{\pi}{4} \cos \left( \frac{\pi}{4} \right)
Using known values:
sin(π4)=22andcos(π4)=22\sin \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \quad \text{and} \quad \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2},

Thus the slope becomes: dydx=22π422=22(1π4)\frac{dy}{dx} = \frac{\sqrt{2}}{2} - \frac{\pi}{4} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \left( 1 - \frac{\pi}{4} \right).

Calculating this value gives: dydx0.15\frac{dy}{dx} \approx 0.15 (to two decimal places).

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;