Photo AI

The derivative of ๐‘“(๐‘ฅ) = 2๐‘ฅยณ + 6๐‘ฅยฒ โˆ’ 12๐‘ฅ + 3 can be expressed in the form ๐‘“โ€ฒ(๐‘ฅ) = ๐‘Ž(๐‘ฅ + ๐‘)ยฒ + ๐‘, where ๐‘Ž, ๐‘, ๐‘ โˆˆ โ„ค and ๐‘ โˆˆ โ„ - Leaving Cert Mathematics - Question 5 - 2021

Question icon

Question 5

The-derivative-of-๐‘“(๐‘ฅ)-=-2๐‘ฅยณ-+-6๐‘ฅยฒ-โˆ’-12๐‘ฅ-+-3-can-be-expressed-in-the-form-๐‘“โ€ฒ(๐‘ฅ)-=-๐‘Ž(๐‘ฅ-+-๐‘)ยฒ-+-๐‘,-where-๐‘Ž,-๐‘,-๐‘-โˆˆ-โ„ค-and-๐‘-โˆˆ-โ„-Leaving Cert Mathematics-Question 5-2021.png

The derivative of ๐‘“(๐‘ฅ) = 2๐‘ฅยณ + 6๐‘ฅยฒ โˆ’ 12๐‘ฅ + 3 can be expressed in the form ๐‘“โ€ฒ(๐‘ฅ) = ๐‘Ž(๐‘ฅ + ๐‘)ยฒ + ๐‘, where ๐‘Ž, ๐‘, ๐‘ โˆˆ โ„ค and ๐‘ โˆˆ โ„. (i) Find the value of ๏ฟฝ... show full transcript

Worked Solution & Example Answer:The derivative of ๐‘“(๐‘ฅ) = 2๐‘ฅยณ + 6๐‘ฅยฒ โˆ’ 12๐‘ฅ + 3 can be expressed in the form ๐‘“โ€ฒ(๐‘ฅ) = ๐‘Ž(๐‘ฅ + ๐‘)ยฒ + ๐‘, where ๐‘Ž, ๐‘, ๐‘ โˆˆ โ„ค and ๐‘ โˆˆ โ„ - Leaving Cert Mathematics - Question 5 - 2021

Step 1

(i) Find the value of ๐‘Ž, the value of ๐‘, and the value of ๐‘.

96%

114 rated

Answer

To find the derivative of the function, we first differentiate:

fโ€ฒ(x)=ddx(2x3+6x2โˆ’12x+3)=6x2+12xโˆ’12f'(x) = \frac{d}{dx}(2x^3 + 6x^2 - 12x + 3) = 6x^2 + 12x - 12

Next, we need to express this in the required form:

fโ€ฒ(x)=a(x+b)2+cf'(x) = a(x + b)^2 + c

Expanding the right side:

a(x2+2bx+b2)+c=ax2+2abx+(ab2+c)a(x^2 + 2bx + b^2) + c = ax^2 + 2abx + (ab^2 + c)

To match coefficients with 6x2+12xโˆ’126x^2 + 12x - 12, we set:

  • a=6a = 6
  • 2ab=122ab = 12
  • ab2+c=โˆ’12ab^2 + c = -12

From 2ab=122ab = 12, we find:

b=122a=122โ‹…6=1b = \frac{12}{2a} = \frac{12}{2 \cdot 6} = 1

Now substituting aa and bb into ab2+c=โˆ’12ab^2 + c = -12:

6(12)+c=โˆ’12โ‡’6+c=โˆ’12โ‡’c=โˆ’186(1^2) + c = -12 \Rightarrow 6 + c = -12 \Rightarrow c = -18

Thus, the values are:

  • a=6a = 6
  • b=1b = 1
  • c=โˆ’18c = -18.

Step 2

(ii) If ๐‘”(๐‘ฅ) = 36๐‘ฅ + 5, find the range of values of ๐‘ฅ for which ๐‘“โ€ฒ(๐‘ฅ) > ๐‘”โ€ฒ(๐‘ฅ).

99%

104 rated

Answer

First, we find the derivative of g(x)g(x):

gโ€ฒ(x)=36g'(x) = 36

Now we set up the inequality:

fโ€ฒ(x)>gโ€ฒ(x)โ‡’6x2+12xโˆ’12>36f'(x) > g'(x) \Rightarrow 6x^2 + 12x - 12 > 36

Rearranging gives:

6x2+12xโˆ’48>0โ‡’x2+2xโˆ’8>06x^2 + 12x - 48 > 0 \Rightarrow x^2 + 2x - 8 > 0

Factoring the quadratic:

(xโˆ’2)(x+4)>0(x - 2)(x + 4) > 0

The roots are x=2x = 2 and x=โˆ’4x = -4. The inequality is satisfied for:

x<โˆ’4ย orย x>2.x < -4 \text{ or } x > 2.

Step 3

Find the value of ๐‘˜ correct to two decimal places.

96%

101 rated

Answer

To find the value of kk, we first differentiate h(x)h(x):

hโ€ฒ(x)=4cosโก(2x)h'(x) = 4 \cos(2x)

Now we evaluate at x=ฯ€6x = \frac{\pi}{6}:

hโ€ฒ(ฯ€6)=4cosโก(ฯ€3)=4โ‹…12=2h'\left(\frac{\pi}{6}\right) = 4 \cos\left(\frac{\pi}{3}\right) = 4 \cdot \frac{1}{2} = 2

Next, we find h(ฯ€6)h(\frac{\pi}{6}):

h(ฯ€6)=2sinโก(ฯ€3)=2โ‹…32=3h\left(\frac{\pi}{6}\right) = 2 \sin\left(\frac{\pi}{3}\right) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}

Using the point-slope form for the tangent line, we have:

yโˆ’h(ฯ€6)=hโ€ฒ(ฯ€6)(xโˆ’ฯ€6)y - h(\frac{\pi}{6}) = h'\left(\frac{\pi}{6}\right)(x - \frac{\pi}{6})

Substituting h(ฯ€6)=3h(\frac{\pi}{6}) = \sqrt{3} and the slope:

yโˆ’3=2(xโˆ’ฯ€6)y - \sqrt{3} = 2\left( x - \frac{\pi}{6} \right)

To find the y-intercept (where x=0x = 0):

yโˆ’3=2(โˆ’ฯ€6)โ‡’y=2(โˆ’ฯ€6)+3y - \sqrt{3} = 2(-\frac{\pi}{6}) \Rightarrow y = 2(-\frac{\pi}{6}) + \sqrt{3}

Calculating this gives us:

kโ‰ˆ0.68k \approx 0.68

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;