Photo AI

The derivative of $f(x) = 2x^3 + 6x^2 - 12x + 3$ can be expressed in the form $f^{ ext{'}}(x) = a(x + b)^2 + c$, where $a, b, c \in \mathbb{Z}$ and $x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 5 - 2021

Question icon

Question 5

The-derivative-of-$f(x)-=-2x^3-+-6x^2---12x-+-3$-can-be-expressed-in-the-form-$f^{-ext{'}}(x)-=-a(x-+-b)^2-+-c$,-where-$a,-b,-c-\in-\mathbb{Z}$-and-$x-\in-\mathbb{R}$-Leaving Cert Mathematics-Question 5-2021.png

The derivative of $f(x) = 2x^3 + 6x^2 - 12x + 3$ can be expressed in the form $f^{ ext{'}}(x) = a(x + b)^2 + c$, where $a, b, c \in \mathbb{Z}$ and $x \in \mathbb{R}... show full transcript

Worked Solution & Example Answer:The derivative of $f(x) = 2x^3 + 6x^2 - 12x + 3$ can be expressed in the form $f^{ ext{'}}(x) = a(x + b)^2 + c$, where $a, b, c \in \mathbb{Z}$ and $x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 5 - 2021

Step 1

Find the value of $a$, the value of $b$, and the value of $c$

96%

114 rated

Answer

To find the derivative of f(x)f(x), we differentiate:

fext(x)=6x2+12x12.f^{ ext{'}}(x) = 6x^2 + 12x - 12.

Next, we want to express this in the form fext(x)=a(x+b)2+cf^{ ext{'}}(x) = a(x+b)^2 + c. Expanding the right side, we have:

a(x2+2bx+b2)+c=ax2+2abx+(ab2+c).a(x^2 + 2bx + b^2) + c = ax^2 + 2abx + (ab^2 + c).

Setting coefficients equal, we find:

  • Coefficient of x2x^2: a=6a = 6
  • Coefficient of xx: 2ab=122(6)b=12b=12ab = 12 \Rightarrow 2(6)b = 12 \Rightarrow b=1
  • Constant term: ab2+c=126(12)+c=126+c=12c=18.ab^2 + c = -12 \Rightarrow 6(1^2) + c = -12 \Rightarrow 6 + c = -12 \Rightarrow c = -18.

Thus:

a=6,  b=1,  c=18.a = 6, \; b = 1, \; c = -18.

Step 2

If $g(x) = 36x + 5$, find the range of values of $x$ for which $f^{ ext{'}}(x) > g^{ ext{'}}(x)$

99%

104 rated

Answer

First, we differentiate g(x)=36x+5g(x) = 36x + 5 to get:

gext(x)=36.g^{ ext{'}}(x) = 36.

Now, we set the inequality:

fext(x)>gext(x)6x2+12x12>36.f^{ ext{'}}(x) > g^{ ext{'}}(x) \Rightarrow 6x^2 + 12x - 12 > 36.

Simplifying this:

6x2+12x48>0x2+2x8>0.6x^2 + 12x - 48 > 0 \Rightarrow x^2 + 2x - 8 > 0.

Factoring gives:

(x+4)(x2)>0.(x+4)(x-2) > 0.

Using a sign chart or test points, the solution for this inequality is:

x<4 or x>2.x < -4 \text{ or } x > 2.

Step 3

Find the value of $k$ correct to two decimal places

96%

101 rated

Answer

To find kk, we first need to find the slope of the tangent line:

  1. Differentiate h(x)h(x): hext(x)=4cos(2x).h^{ ext{'}}(x) = 4 \cos(2x).
  2. Evaluate at x=π6x = \frac{\pi}{6}: hext(π6)=4cos(π3)=412=2.h^{ ext{'}}(\frac{\pi}{6}) = 4 \cos(\frac{\pi}{3}) = 4 \cdot \frac{1}{2} = 2.

So, the slope of the tangent line at A(π6,h(π6))A(\frac{\pi}{6}, h(\frac{\pi}{6})) is 22.

  1. The coordinates of the point A(π6,h(π6))A(\frac{\pi}{6}, h(\frac{\pi}{6})): h(π6)=2sin(π3)=232=3.h(\frac{\pi}{6}) = 2 \sin(\frac{\pi}{3}) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}. Hence, A(π6,3)A(\frac{\pi}{6}, \sqrt{3}).

  2. Using point-slope form of the line to find kk: y3=2(xπ6).y - \sqrt{3} = 2(x - \frac{\pi}{6}).

  3. Setting x=0x = 0 to find where it intercepts the y-axis: y3=2(0π6)y=2(π6)+3=π3+3.y - \sqrt{3} = 2(0 - \frac{\pi}{6}) \Rightarrow y = 2(-\frac{\pi}{6}) + \sqrt{3} = -\frac{\pi}{3} + \sqrt{3}.

Calculating this gives: [ k \approx -0.68 \text{ (to two decimal places) }. ]

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;