(a) Prove by induction that
$$egin{aligned}
otag extstyle \
m{ extstyle extstyle extstyle extstyle extstyle}
onumberm{ extstyle extstyle extstyle}
onumber... show full transcript
Worked Solution & Example Answer:(a) Prove by induction that
$$egin{aligned}
otag extstyle \
m{ extstyle extstyle extstyle extstyle extstyle}
onumberm{ extstyle extstyle extstyle}
onumberm{ extstyle extstyle extstyle}
m{ extstyle extstyle extstyle} & \ \textstyle extstyle extstyle extstyle\
extstyle extstyle extstyle m{= rac{n(n+1)}{2}} = n(n+1) \ extstyle extstyle extstyle\
onumber \
extstyle n ext{ extbf{and} } n ext{ extbf{and} } n ext{ extbf{ in } } ext{N} - Leaving Cert Mathematics - Question 2 - 2018
Step 1
Prove by induction that
$$ extstylem{ extstyle m{ extstyle extstyle extstyle extstyle extstyle}
onumberm{ extstyle extstyle extstyle}
onumberm{ extstyle extstyle extstyle}
onumberm{ extstyle extstyle extstyle} = rac{n(n+1)}{2}} ext{ for any } n ext{ in } ext{N}.$$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To prove the statement by induction, we first verify the base case. For n=1, the left-hand side is:
extstylem{ extstyle extstyle extstylerac{1(1+1)}{2} = 1}.
This matches the right-hand side, proving the base case.
Next, assume the statement is true for some n=k:
extstylem{ extstyle extstyle extstylerac{k(k+1)}{2}}
Now we must show it holds for n=k+1:
extstylem{ extstyle rac{(k+1)(k+2)}{2}} = rac{k(k+1)}{2} + (k+1)= rac{k(k+1) + 2(k+1)}{2} = rac{(k+1)(k+2)}{2}
This proves the induction step, hence the formula holds for all natural numbers n.
Step 2
State the range of values of x for which the series $$ extstylem{ extstyle extstyle extstyle extstyle extstyle extstyle extstyle(4x-1)^{r}}$$ is convergent.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
This series is geometric, and its convergence depends on the common ratio:
∣4x−1∣<1.
This leads us to the inequalities:
−1<4x−1<1,
which simplifies to:
0 < x < rac{1}{2}.
Now, for the infinite sum, the formula for a converging geometric series is given by:
S_ ext{inf} = rac{a}{1 - r},
where a=4x−1 and the common ratio r=4x−1 must satisfy ∣4x−1∣<1.
Hence, the infinite sum can be expressed as:
S_ ext{inf} = rac{1}{1 - (4x - 1)} = rac{1}{2 - 4x},
valid for 0 < x < rac{1}{2}.
Join the Leaving Cert students using SimpleStudy...