Photo AI

(a) Prove by induction that $$egin{aligned} otag extstyle \ m{ extstyle extstyle extstyle extstyle extstyle} onumberm{ extstyle extstyle extstyle} onumberm{ extstyle extstyle extstyle} m{ extstyle extstyle extstyle} & \ \textstyle extstyle extstyle extstyle\ extstyle extstyle extstyle m{= rac{n(n+1)}{2}} = n(n+1) \ extstyle extstyle extstyle\ onumber \ extstyle n ext{ extbf{and} } n ext{ extbf{and} } n ext{ extbf{ in } } ext{N} - Leaving Cert Mathematics - Question 2 - 2018

Question icon

Question 2

(a)-Prove-by-induction-that---$$egin{aligned}-otag-extstyle-\-m{-extstyle--extstyle--extstyle--extstyle--extstyle}-onumberm{-extstyle--extstyle--extstyle}-onumberm{-extstyle--extstyle--extstyle}-m{-extstyle--extstyle--extstyle}-&--\--\textstyle--extstyle-extstyle-extstyle\--extstyle--extstyle-extstyle-m{=--rac{n(n+1)}{2}}-=-n(n+1)-\-extstyle--extstyle-extstyle\-onumber--\--extstyle-n--ext{--extbf{and}-}-n--ext{--extbf{and}-}-n--ext{--extbf{-in-}-}-ext{N}-Leaving Cert Mathematics-Question 2-2018.png

(a) Prove by induction that $$egin{aligned} otag extstyle \ m{ extstyle extstyle extstyle extstyle extstyle} onumberm{ extstyle extstyle extstyle} onumber... show full transcript

Worked Solution & Example Answer:(a) Prove by induction that $$egin{aligned} otag extstyle \ m{ extstyle extstyle extstyle extstyle extstyle} onumberm{ extstyle extstyle extstyle} onumberm{ extstyle extstyle extstyle} m{ extstyle extstyle extstyle} & \ \textstyle extstyle extstyle extstyle\ extstyle extstyle extstyle m{= rac{n(n+1)}{2}} = n(n+1) \ extstyle extstyle extstyle\ onumber \ extstyle n ext{ extbf{and} } n ext{ extbf{and} } n ext{ extbf{ in } } ext{N} - Leaving Cert Mathematics - Question 2 - 2018

Step 1

Prove by induction that $$ extstylem{ extstyle m{ extstyle extstyle extstyle extstyle extstyle} onumberm{ extstyle extstyle extstyle} onumberm{ extstyle extstyle extstyle} onumberm{ extstyle extstyle extstyle} = rac{n(n+1)}{2}} ext{ for any } n ext{ in } ext{N}.$$

96%

114 rated

Answer

To prove the statement by induction, we first verify the base case. For n=1n=1, the left-hand side is: extstylem{ extstyle extstyle extstyle rac{1(1+1)}{2} = 1}. This matches the right-hand side, proving the base case.

Next, assume the statement is true for some n=kn=k: extstylem{ extstyle extstyle extstyle rac{k(k+1)}{2}} Now we must show it holds for n=k+1n=k+1:

extstylem{ extstyle rac{(k+1)(k+2)}{2}} = rac{k(k+1)}{2} + (k+1) = rac{k(k+1) + 2(k+1)}{2} = rac{(k+1)(k+2)}{2} This proves the induction step, hence the formula holds for all natural numbers nn.

Step 2

State the range of values of x for which the series $$ extstylem{ extstyle extstyle extstyle extstyle extstyle extstyle extstyle(4x-1)^{r}}$$ is convergent.

99%

104 rated

Answer

This series is geometric, and its convergence depends on the common ratio: 4x1<1|4x-1| < 1. This leads us to the inequalities: 1<4x1<1-1 < 4x - 1 < 1, which simplifies to: 0 < x < rac{1}{2}.

Now, for the infinite sum, the formula for a converging geometric series is given by: S_ ext{inf} = rac{a}{1 - r}, where a=4x1a = 4x-1 and the common ratio r=4x1r = 4x - 1 must satisfy 4x1<1|4x-1| < 1. Hence, the infinite sum can be expressed as: S_ ext{inf} = rac{1}{1 - (4x - 1)} = rac{1}{2 - 4x}, valid for 0 < x < rac{1}{2}.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;