Photo AI

Use the function $h(x) = 0.001x^3 - 0.12x^2 + 3.6x + 5$, $x \in \mathbb{R}$, to find the average height of this section of the track above level ground, from $x = 0$ to $x = 75$ - Leaving Cert Mathematics - Question c - 2021

Question icon

Question c

Use-the-function-$h(x)-=-0.001x^3---0.12x^2-+-3.6x-+-5$,-$x-\in-\mathbb{R}$,-to-find-the-average-height-of-this-section-of-the-track-above-level-ground,-from-$x-=-0$-to-$x-=-75$-Leaving Cert Mathematics-Question c-2021.png

Use the function $h(x) = 0.001x^3 - 0.12x^2 + 3.6x + 5$, $x \in \mathbb{R}$, to find the average height of this section of the track above level ground, from $x = 0$... show full transcript

Worked Solution & Example Answer:Use the function $h(x) = 0.001x^3 - 0.12x^2 + 3.6x + 5$, $x \in \mathbb{R}$, to find the average height of this section of the track above level ground, from $x = 0$ to $x = 75$ - Leaving Cert Mathematics - Question c - 2021

Step 1

Integrate the function $h(x)$

96%

114 rated

Answer

To find the average height, we first need to integrate the function over the interval [0, 75]:

075h(x)  dx=075(0.001x30.12x2+3.6x+5)  dx\int_0^{75} h(x) \; dx = \int_0^{75} (0.001x^3 - 0.12x^2 + 3.6x + 5) \; dx

Calculating the integral, we get:

0.001x440.12x33+3.6x22+5x+C\frac{0.001x^4}{4} - \frac{0.12x^3}{3} + \frac{3.6x^2}{2} + 5x + C

Step 2

Evaluate the definite integral

99%

104 rated

Answer

Next, we evaluate the definite integral from 0 to 75:

075h(x)  dx=[0.001(75)440.12(75)33+3.6(75)22+5(75)][0]\int_0^{75} h(x) \; dx = \left[ \frac{0.001(75)^4}{4} - \frac{0.12(75)^3}{3} + \frac{3.6(75)^2}{2} + 5(75) \right] - \left[ 0 \right]

Calculating this step-by-step, we find:

  • For x=75x = 75:
    • 0.001(75)44=1535.15625\frac{0.001(75)^4}{4} = 1535.15625
    • 0.12(75)33=156.25\frac{0.12(75)^3}{3} = 156.25
    • 3.6(75)22=1350\frac{3.6(75)^2}{2} = 1350
    • 5(75)=3755(75) = 375

Thus, the total area under h(x)h(x) from 00 to 7575 is:

1535.15625156.25+1350+375=1547.906251535.15625 - 156.25 + 1350 + 375 = 1547.90625

Step 3

Calculate the average height

96%

101 rated

Answer

Now, to find the average height, we divide the total area by the length of the interval:

Average height=175075h(x)  dx=1547.906257520.639 m\text{Average height} = \frac{1}{75} \int_0^{75} h(x) \; dx = \frac{1547.90625}{75} \approx 20.639\text{ m}

Rounding to two decimal places, we get:

Average height20.64 m\text{Average height} \approx 20.64 \text{ m}

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;