Photo AI

The diagram shows the graph of the function $y = ext{sin} \, x$ in the domain $0 \leq x \leq \pi$, $x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 6 - 2015

Question icon

Question 6

The-diagram-shows-the-graph-of-the-function-$y-=--ext{sin}-\,-x$-in-the-domain-$0-\leq-x-\leq-\pi$,-$x-\in-\mathbb{R}$-Leaving Cert Mathematics-Question 6-2015.png

The diagram shows the graph of the function $y = ext{sin} \, x$ in the domain $0 \leq x \leq \pi$, $x \in \mathbb{R}$. (a) Complete the table below, correct to thr... show full transcript

Worked Solution & Example Answer:The diagram shows the graph of the function $y = ext{sin} \, x$ in the domain $0 \leq x \leq \pi$, $x \in \mathbb{R}$ - Leaving Cert Mathematics - Question 6 - 2015

Step 1

Complete the table below, correct to three decimal places.

96%

114 rated

Answer

To complete the table, we will evaluate the sine function at the specified points:

  • For x=0x = 0, y=sin(0)=0y = \text{sin}(0) = 0
  • For x=π6x = \frac{\pi}{6}, y=sin(π6)=0.5y = \text{sin}(\frac{\pi}{6}) = 0.5
  • For x=π3x = \frac{\pi}{3}, y=sin(π3)=320.866y = \text{sin}(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} \approx 0.866
  • For x=π2x = \frac{\pi}{2}, y=sin(π2)=1y = \text{sin}(\frac{\pi}{2}) = 1
  • For x=2π3x = \frac{2\pi}{3}, y=sin(2π3)=320.866y = \text{sin}(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2} \approx 0.866
  • For x=5π6x = \frac{5\pi}{6}, y=sin(5π6)=0.5y = \text{sin}(\frac{5\pi}{6}) = 0.5
  • For x=πx = \pi, y=sin(π)=0y = \text{sin}(\pi) = 0

Step 2

Use the trapezoidal rule to find the approximate area of the region enclosed between the curve and the x-axis in the given domain.

99%

104 rated

Answer

The trapezoidal rule formula is given by:

A=h2[y1+2(y2+y3++yn1)+yn]A = \frac{h}{2} [y_1 + 2(y_2 + y_3 + \ldots + y_{n-1}) + y_n]

Here, we have:

  • h=π6h = \frac{\pi}{6}
  • y0=0y_0 = 0, y1=0.5y_1 = 0.5, y2=0.866y_2 = 0.866, y3=1y_3 = 1, y4=0.866y_4 = 0.866, y5=0.5y_5 = 0.5, y6=0y_6 = 0

Thus,

A=π62[0+2(0+0.5+0.866+1+0.866+0.5)]=π12[0+2×3.732]1.95407A = \frac{\frac{\pi}{6}}{2} [0 + 2(0 + 0.5 + 0.866 + 1 + 0.866 + 0.5)] = \frac{\pi}{12} [0 + 2 \times 3.732] \approx 1.95407

Step 3

Use integration to find the actual area of the region shown above.

96%

101 rated

Answer

To find the actual area, we integrate y=sinxy = \text{sin} \, x from 00 to π\pi:

0πsinxdx=[cosx]0π=[11]=2\int_0^{\pi} \text{sin} \, x \, dx = [-\text{cos} \, x]_0^{\pi} = -[-1 - 1] = 2

Step 4

Find the percentage error in your answer to (b) above.

98%

120 rated

Answer

The percentage error can be calculated as follows:

Percentage error=(Actual AreaTrapezoidal AreaActual Area)×100=(21.954072)×1002.3%\text{Percentage error} = \left(\frac{|\text{Actual Area} - \text{Trapezoidal Area}|}{\text{Actual Area}}\right) \times 100 = \left(\frac{|2 - 1.95407|}{2}\right) \times 100 \approx 2.3\%

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;