Photo AI

Question 6A Prove that, if two triangles $ABC$ and $A'B'C'$ are similar, then their sides are proportional, in order: $$\frac{|AB|}{|A'B'|} = \frac{|BC|}{|B'C'|} = \frac{|CA|}{|C'A'|}$$ Given: - The similar triangles $ABC$ and $A'B'C'$ - Leaving Cert Mathematics - Question 6A - 2014

Question icon

Question 6A

Question-6A--Prove-that,-if-two-triangles-$ABC$-and-$A'B'C'$-are-similar,-then-their-sides-are-proportional,-in-order:--$$\frac{|AB|}{|A'B'|}-=-\frac{|BC|}{|B'C'|}-=-\frac{|CA|}{|C'A'|}$$--Given:---The-similar-triangles-$ABC$-and-$A'B'C'$-Leaving Cert Mathematics-Question 6A-2014.png

Question 6A Prove that, if two triangles $ABC$ and $A'B'C'$ are similar, then their sides are proportional, in order: $$\frac{|AB|}{|A'B'|} = \frac{|BC|}{|B'C'|} =... show full transcript

Worked Solution & Example Answer:Question 6A Prove that, if two triangles $ABC$ and $A'B'C'$ are similar, then their sides are proportional, in order: $$\frac{|AB|}{|A'B'|} = \frac{|BC|}{|B'C'|} = \frac{|CA|}{|C'A'|}$$ Given: - The similar triangles $ABC$ and $A'B'C'$ - Leaving Cert Mathematics - Question 6A - 2014

Step 1

Given:

96%

114 rated

Answer

The similar triangles ABCABC and ABCA'B'C'.

Step 2

To Prove:

99%

104 rated

Answer

ABAB=BCBC=CACA\frac{|AB|}{|A'B'|} = \frac{|BC|}{|B'C'|} = \frac{|CA|}{|C'A'|}

Step 3

Construction:

96%

101 rated

Answer

Mark BB' on ACAC such that AB=AB.|AB'| = |A'B'|. Mark CC' on AC|AC| such that AC=AC.|AC'| = |A'C'|.

Step 4

Proof:

98%

120 rated

Answer

ΔABCΔABC\Delta ABC' \cong \Delta A'B'C' by SAS. Hence, BCBC|B'C'| \parallel |BC| (by corresponding angles). Thus,

ABAB=BCBC=CACA\frac{|AB|}{|A'B'|} = \frac{|BC|}{|B'C'|} = \frac{|CA|}{|C'A'|} …Theorem.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;