Photo AI

Prove, using induction, that if n is a positive integer then (cos θ + i sin θ)ⁿ = cos(nθ) + i sin(nθ), where 𝑖² = -1 - Leaving Cert Mathematics - Question 4 - 2018

Question icon

Question 4

Prove,-using-induction,-that-if-n-is-a-positive-integer-then-(cos-θ-+-i-sin-θ)ⁿ-=-cos(nθ)-+-i-sin(nθ),-where-𝑖²-=--1-Leaving Cert Mathematics-Question 4-2018.png

Prove, using induction, that if n is a positive integer then (cos θ + i sin θ)ⁿ = cos(nθ) + i sin(nθ), where 𝑖² = -1. Hence, or otherwise, find (-\frac{1}{2} + \f... show full transcript

Worked Solution & Example Answer:Prove, using induction, that if n is a positive integer then (cos θ + i sin θ)ⁿ = cos(nθ) + i sin(nθ), where 𝑖² = -1 - Leaving Cert Mathematics - Question 4 - 2018

Step 1

P(1)

96%

114 rated

Answer

To show that the statement holds for n = 1:

(cosθ+isinθ)1=cos(θ)+isin(θ)(cos \theta + i sin \theta)^1 = cos(\theta) + i sin(\theta)

This confirms that P(1) is true.

Step 2

Assume P(k)

99%

104 rated

Answer

Assume that the proposition holds for n = k:

P(k):(cosθ+isinθ)k=cos(kθ)+isin(kθ)P(k): (cos \theta + i sin \theta)^k = cos(k\theta) + i sin(k\theta)

We will now show it holds for k + 1.

Step 3

Test P(k + 1)

96%

101 rated

Answer

For n = k + 1:

(cosθ+isinθ)k+1=(cosθ+isinθ)k(cosθ+isinθ)(cos \theta + i sin \theta)^{k+1} = (cos \theta + i sin \theta)^{k} \cdot (cos \theta + i sin \theta)

Substituting the assumption:

=(cos(kθ)+isin(kθ))(cosθ+isinθ)= (cos(k\theta) + i sin(k\theta))(cos \theta + i sin \theta)

Step 4

Expand and Simplify

98%

120 rated

Answer

Using the trigonometric identities:

cos A + i sin A = e^{iA} $$, we calculate: $$= (cos(k\theta)cos \theta - sin(k\theta)sin \theta) + i(cos(k\theta)sin \theta + sin(k\theta)cos \theta)$$ Using the angle addition formulas: $$= cos((k+1)\theta) + i sin((k+1)\theta)$$

Step 5

Conclusion

97%

117 rated

Answer

Thus, the proposition is true for n = k + 1 if it is true for n = k. Therefore, by the principle of mathematical induction, the formula holds true for all positive integers n.

Step 6

Find \\((-\frac{1}{2} + \frac{\sqrt{3}}{2}i)^{3}\\)

97%

121 rated

Answer

To solve:

(12+32i)3=r3(cos(3θ)+isin(3θ))\left( -\frac{1}{2} + \frac{\sqrt{3}}{2} i \right)^{3} = r^{3}(cos(3\theta) + isin(3\theta))

Where r is the modulus and ( \theta ) is the argument.

Calculate r:

r=(12)2+(32)2=1r = \sqrt{\left(-\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} = 1

Next, find the argument:

θ=tan1(3212)=2π3\theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \frac{2\pi}{3}

Thus,

(12+32i)3=1(cos(2π)+isin(2π))=1+0i=1 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right)^{3} = 1 (cos(2\pi) + i sin(2\pi)) = 1 + 0i = 1

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;