Photo AI

(a) (i) Prove that $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ - Leaving Cert Mathematics - Question 4 - 2022

Question icon

Question 4

(a)-(i)-Prove-that-$\tan(A---B)-=-\frac{\tan-A---\tan-B}{1-+-\tan-A-\tan-B}$-Leaving Cert Mathematics-Question 4-2022.png

(a) (i) Prove that $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$. (a) (ii) Write $\tan 15^\circ$ in the form $\frac{\sqrt{a - 1}}{\sqrt{a + 1}}$ where ... show full transcript

Worked Solution & Example Answer:(a) (i) Prove that $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ - Leaving Cert Mathematics - Question 4 - 2022

Step 1

Prove that $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

96%

114 rated

Answer

To prove this identity, we start with the definitions of tangent in terms of sine and cosine:

tanA=sinAcosAandtanB=sinBcosB\tan A = \frac{\sin A}{\cos A} \quad \text{and} \quad \tan B = \frac{\sin B}{\cos B}

Using the angle subtraction formulas, we can express:

tan(AB)=sin(AB)cos(AB)\tan(A - B) = \frac{\sin(A - B)}{\cos(A - B)}

Applying the sine and cosine subtraction formulas:

sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B

cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A \cos B + \sin A \sin B

Now we substitute:

tan(AB)=sinAcosBcosAsinBcosAcosB+sinAsinB\tan(A - B) = \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}

Dividing the numerator and the denominator by cosAcosB\cos A \cos B, we get:

tan(AB)=sinAcosAsinBcosB1+sinAcosAsinBcosB\tan(A - B) = \frac{\frac{\sin A}{\cos A} - \frac{\sin B}{\cos B}}{1 + \frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B}}

This simplifies to:

tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}

Step 2

Write $\tan 15^\circ$ in the form $\frac{\sqrt{a - 1}}{\sqrt{a + 1}}$ where $a \in \mathbb{N}$

99%

104 rated

Answer

First, we can express tan15\tan 15^\circ using known angles:

tan15=tan(4530)\tan 15^\circ = \tan(45^\circ - 30^\circ)

Using the formula for tan of a difference:

tan(4530)=tan45tan301+tan45tan30\tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ}

Substituting values:

tan45=1andtan30=13\tan 45^\circ = 1 \quad \text{and} \quad \tan 30^\circ = \frac{1}{\sqrt{3}}

Thus:

tan15=1131+113=313+1\tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}

Multiplying numerator and denominator by 31\sqrt{3} - 1 leads to:

tan15=(31)(31)(3+1)(31)=323+131=4232=23\tan 15^\circ = \frac{(\sqrt{3} - 1)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = \frac{3 - 2\sqrt{3} + 1}{3 - 1} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}

We can express 232 - \sqrt{3} as:

tan15=313+1\tan 15^\circ = \frac{\sqrt{3 - 1}}{\sqrt{3 + 1}}

where a=3a = 3.

Step 3

Find the length $|AC|$

96%

101 rated

Answer

Given that AB=1022|AB| = 10 \sqrt{2 - \sqrt{2}} and ACB=45|\angle ACB| = 45^\circ, we can use the Law of Cosines.

First, denote the lengths:

AC=BC=x|AC| = |BC| = x

By the Law of Cosines:

AB2=AC2+BC22ACBCcos(45)|AB|^2 = |AC|^2 + |BC|^2 - 2 |AC||BC| \cos(45^\circ)

Since AC=BC|AC| = |BC|, we can simplify this:

(1022)2=x2+x22x222(10 \sqrt{2 - \sqrt{2}})^2 = x^2 + x^2 - 2x^2 \cdot \frac{\sqrt{2}}{2}

This reduces to:

100(22)=2x2(122)100(2 - \sqrt{2}) = 2x^2(1 - \frac{\sqrt{2}}{2})

Solving for xx:

100(22)=2x2222100(22)=(2x22x2)100(2 - \sqrt{2}) = 2x^2 \cdot \frac{2 - \sqrt{2}}{2} \Rightarrow 100(2 - \sqrt{2}) = (2x^2 - \sqrt{2}x^2)

ightarrow |AC| = 10$$

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;