Photo AI

Last Updated Sep 27, 2025

Substitution (Reverse Chain Rule) Simplified Revision Notes

Revision notes with simplified explanations to understand Substitution (Reverse Chain Rule) quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

422+ students studying

8.2.5 Substitution (Reverse Chain Rule)

The substitution method, also known as the Reverse Chain Rule, is a powerful technique for solving integrals where the integrand is a product of a function and its derivative. It simplifies the integration process by making a substitution that transforms the integral into a simpler form.

Steps for Substitution (Reverse Chain Rule):

infoNote
  1. Choose a Substitution:
  • Identify a part of the integrand that can be substituted by a single variable, usually denoted as uu.
  • A common choice is to let uu equal an inner function whose derivative is present in the integrand.
  1. Differentiate to Find du:
  • Differentiate your chosen substitution to express du in terms of dx.
  • This allows you to rewrite the differential dxdx in terms of dudu.
  1. Rewrite the Integral:
  • Substitute both the function and its differential into the integral, replacing all x-terms with u-terms.
  • The integral should now be in terms of uu and du du, often simplifying the process.
  1. Integrate:
  • Perform the integration with respect to u u.
  1. Substitute Back:
  • After integrating, replace uu with the original expression in terms of xx to obtain the final answer.
infoNote

Example:

Evaluate 2xex2dx.\int 2x \cdot e^{x^2} \, dx.


  1. Choose a Substitution:
  • Let uu =x2 x^2, since the derivative of x2x^2 is 2x2x, which is present in the integrand.
  1. Differentiate to Find du:
  • dudx=2x,du=2xdx.\frac{du}{dx} = 2x, du = 2x \, dx.
  1. Rewrite the Integral:
  • Substitute into the integral:

2xex2dx=eudu\int 2x \cdot e^{x^2} \, dx = \int e^u \, du

  1. Integrate:
  • The integral of eue^u with respect to uu is eu.e^u.
  1. Substitute Back:
  • Replace uu with x2:x^2:

ex2+Ce^{x^2} + C


Integration: Which Method to Use

infoNote
  1. Is it of the form f(ax+b)?f(ax+b)? \Rightarrow Reverse Chain Rule Example: ax+b=(53x)ax + b = (5-3x)
253xdx=2(53x)1dx=2ln53x3+c\int \frac{2}{5-3x} dx = \int 2(5-3x)^{-1} dx = \frac {2 \ln |5-3x|}{-3} + c÷3 by diff of bracket\div -3 \ \text{by diff of bracket}=23ln53x+c= -\frac{2}{3} \ln |5-3x| + c \quad
infoNote
  1. Is it of the form: Integration (i.e., Reverse chain rule)
f(x)f(x)dx=lnf(x)+c\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + cf(x)(f(x))ndx=1n+1(f(x))n+1+c\int f'(x)(f(x))^n dx = \frac{1}{n+1}(f(x))^{n+1} + ce.g.5x2x3+6dx=533x2x3+6dxboth are equivalente.g. \int \frac{5x^2}{x^3+6} dx = \frac{5}{3} \int \frac{3x^2}{x^3+6} dx \quad \text {both are equivalent}=53lnx3+6+c= \frac{5}{3} \ln |x^3+6| + ce.g.6cosx(sinx+15)12dx=6cosx(sinx+15)12dxf(x)=cosx,f(x)n=sinx+15)12\text {e.g.} \quad \int 6\cos x (\sin x + 15)^{12} dx = 6\int \cos x (\sin x+15)^{12} \, dx \\ f'(x) = \cos x, f(x)^n = \sin x+15)^{12}=113(sinx+15)13+c= \frac{1}{13} (\sin x + 15)^{13} + c
infoNote
  1. Check for partial fractions (i.e., is the bottom factorised or will it?)
e.g.1x22dx\text {e.g.} \quad \int \frac{1}{x^2-2} dx=1(x2)(x+2)dx= \int \frac{1}{(x-\sqrt{2})(x+\sqrt{2})} dxLet1(x+2)(x2)=Ax+2+Bx2Let \quad \frac {1}{(x+\sqrt{2})(x-\sqrt{2})} = \frac {A}{x+\sqrt{2}} + \frac {B}{x-\sqrt{2}}1A(x2)+B(x+2)1 \equiv A(x-\sqrt{2}) + B(x+\sqrt{2})Letx=21=B(22)B=122=.Let x = \sqrt{2} \Rightarrow 1 = B(2\sqrt{2}) \Rightarrow B = \frac{1}{2\sqrt{2}} = \sqrt{.}x=21A(22)A=24x = -\sqrt{2} \Rightarrow 1 \equiv A(-2\sqrt2) \Rightarrow A = -\frac {\sqrt2}{4}24(1x+2)+24(1x2)dx\Rightarrow \int -\frac {\sqrt2}{4} \left (\frac {1}{x+\sqrt2}\right)+ \frac {\sqrt2}{4} \left (\frac {1}{x-\sqrt2}\right) \, dx=24(1x+2+1x2)dx= \frac{\sqrt{2}}{4} \int \left( \frac{-1}{x + \sqrt{2}} + \frac{1}{x - \sqrt{2}} \right) dx=24(lnx+2+lnx2)+c= \frac{\sqrt{2}}{4} \left( -\ln|x + \sqrt{2}| + \ln|x - \sqrt{2}| \right) + c=24lnx2x+2+c= \frac{\sqrt{2}}{4} \ln \left| \frac{x - \sqrt{2}}{x + \sqrt{2}} \right| + c
infoNote
  1. Check if trig identities are applicable
sin2x+cos2x1\sin^2 x + \cos^2 x \equiv 1sec2x1+tan2x\sec^2 x \equiv 1 + \tan^2 xcot2x+1csc2x\cot^2 x + 1 \equiv \csc^2 xcos2x=2cos2x1=12sin2x=cos2xsin2x\cos 2x = 2\cos^2 x - 1 \\ = 1 - 2\sin^2 x \\= \cos^2 x - \sin^2 xsin2x=2sinxcosx\sin 2x = 2\sin x \cos x

Differentiation

f(x)f(x)f(x)f'(x)
tankx\tan kxksec2kxk\sec^2 kx
secx\sec xsecxtanx\sec x \tan x
cotx\cot xcsc2x-\csc^2 x
cscx\csc xcscxcotx-\csc x \cot x
infoNote
f(x)(f(x))ndx=1n+1(f(x))n+1+c\int f'(x)(f(x))^n dx = \frac{1}{n+1} (f(x))^{n+1} + c
infoNote
e.g.tan2xdx=sec2x1dx=tanxx+ce.g. \int \tan^2 x \, dx = \int \sec^2 x - 1 \, dx = \tan x - x + ce.g.sec6xsecxtanxdx=sec5xsecxtanxdxf(x)5       f(x)=16sec6x+ce.g. \int \sec^6 x \sec x \tan x \, dx\\ = \int \sec^5x \sec x \tan x \, dx\\ \underbrace{}_{f(x)^5} \ \ \ \ \ \ \ \quad \underbrace{}_{f(x)} \\= \frac{1}{6} \sec^6 x + c
infoNote
e.g.cot2xdx=(csc2x1)dx=cotxx+ce.g. \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx = -\cot x - x + csin2x+cos2x=11+cot2x=csc2x\sin^2 x + \cos^2 x = 1 \quad \Rightarrow \quad 1 + \cot^2 x = \csc^2 x4sinxcosx2cosx23dx=2(2sinxcosx)(2cos2x1)2dx\int \frac{4 \sin x \cos x}{2 \cos x^2 - 3} \, dx = \int \frac{2 (2\sin x \cos x)}{(2 \cos^2 x - 1)- 2} \, dx=2sin2xcos2x2dx==2sin2xcos2x2dx= \int \frac{2 \sin 2x }{\cos 2x - 2}\, dx = = \int \frac{-2 \sin 2x }{\cos 2x - 2}\, dx

Using f(x)f(x)=lnf(x)+c\frac{f'(x)}{f(x)} = \ln|f(x)| + c

=lncos2x2+c= -\ln|\cos 2x - 2| + c
infoNote
(tanx+1)2dx=tan2x+2tanx+1dx\int (\tan x + 1)^2 \, dx = \int \tan^2 x + 2 \tan x + 1 \, dxLet,A=tan2x,B=2tanxLet, \quad A = \tan^2 x, \quad B = 2 \tan xA=tan2xdx=sec2x1dx=tanxx+cA = \int \tan^2 x \, dx = \int \sec^2 x - 1 \, dx = \tan x - x + cB=2tanxdx=2sinxcosxdx=2sinxcosxdx=2lncosx+cB = \int 2 \tan x \, dx = \int \frac{2 \sin x}{\cos x}\, dx = -2\int \frac{-\sin x}{\cos x}\, dx =-2 \ln|\cos x| + cI=tanxx2lncosx+x+cI = \tan x - \cancel x - 2 \ln|\cos x|+\cancel x + cI=tanx2lncosx+cI = \tan x - 2 \ln|\cos x| + c

5) Substitution or By Parts

  • By parts is usually used to integrate a function that is a product of two functions that are not related by differentiation. e.g.
xex2dx\int xe^{x^2} \, dx \quad \checkmark x2sinxdx\int x^2 \sin x \, dx \quad \checkmark x2ex3+4dx×(Differential of power is outside, use reverse chain rule or substitution)\int x^2 e^{x^3 + 4} \, dx \quad \times \quad (\text{Differential of power is outside, use reverse chain rule or substitution})
  • Substitution is used for examples like the third one above where there is a differential relationship (i.e. ddx(x3+4)=3x2 \frac{d}{dx}(x^3+4) = 3x^2, so x2x^2 at front will cancel) or where several terms on a denominator need to be combined to make the integral simpler.

e.g.

x6x3dx(By substitution)\int x \sqrt{6x - 3} \, dx \quad (\text{By substitution}) Let u=6x3dudx=6dx=16duLet\ u = 6x - 3 \Rightarrow \frac{du}{dx} = 6 \Rightarrow dx = \frac{1}{6} du I=xu12×16du=16xu12du\Rightarrow I = \int xu^{\frac{1}{2}} \times \frac{1}{6}du = \frac{1}{6}\int xu^{\frac{1}{2}}du Sinceu=6x3u+3=6xx=u6+12\text {Since} \quad u = 6x - 3 \Rightarrow u + 3 = 6x \Rightarrow x = \frac{u}{6}+\frac {1}{2} I=16(u6+12)u12du=16u326+1122du\Rightarrow I = \frac{1}{6} \int \left (\frac{u}{6}+\frac {1}{2} \right )u^{\frac{1}{2}} du = \frac{1}{6} \int \frac{u^{\frac{3}{2}}}{6}+\frac {1^{\frac{1}{2}}}{2} du =16[2u5256+2u3232]+C=190u52+118u32+C= \frac{1}{6} \left[ \frac{2u^{\frac{5}{2}}}{56} + \frac{2u^{\frac{3}{2}}}{32} \right] + C = \frac{1}{90} u^{\frac{5}{2}} + \frac{1}{18} u^{\frac{3}{2}} + C =190(6x3)52+118(6x3)32+C= \frac{1}{90} (6x-3)^{\frac{5}{2}} + \frac{1}{18} (6x-3)^{\frac{3}{2}} + C
infoNote

Example: x6x3dx\int x \sqrt{6x - 3} \, dx (Same again but by parts)

Integration by parts:

udvdxdx=uvvdudxdx\int u \frac{dv}{dx} \, dx = uv - \int v \frac{du}{dx} \, dx

Let:

  • u=xdudx=1u = x \Rightarrow \frac{du}{dx} = 1
  • v=2(6x3)323×6dvdx=(6x3)12v = \dfrac{2(6x-3)^{\frac{3}{2}}}{3 \times 6}\Rightarrow \dfrac{dv}{dx} = (6x-3)^{\frac{1}{2}}
=19(6x3)32= \dfrac{1}{9}(6x-3)^{\frac{3}{2}}

Then:

I=x×19(6x3)3219(6x3)32dxI = x \times \frac{1}{9}(6x-3)^{\frac{3}{2}} - \int \frac{1}{9}(6x-3)^{\frac{3}{2}} \, dx=x9(6x3)321925(6x3)526+c= \frac{x}{9}(6x-3)^{\frac{3}{2}} - \frac{1}{9} \cdot \frac{2}{5}\frac{(6x-3)^{\frac{5}{2}}}{6} + c=x9(6x3)321135(6x3)52+c= \frac{x}{9}(6x-3)^{\frac{3}{2}} - \frac{1}{135}(6x-3)^{\frac{5}{2}} + c

However, it looks like we have got two different answers to the same question.

For substitution we got:

190(6x3)52118(6x3)32+c\frac{1}{90}(6x-3)^{\frac{5}{2}} - \frac{1}{18}(6x-3)^{\frac{3}{2}} + c=190(6x3)32[(6x3)1+5]+c= \frac{1}{90} (6x - 3)^{\frac{3}{2}} \left[ (6x - 3)^{1} + 5 \right] + c=190(6x3)32(6x+2)+c= \frac{1}{90} (6x - 3)^{\frac{3}{2}} (6x + 2) + c=290(6x3)32(3x+1)+c= \frac{2}{90} (6x - 3)^{\frac{3}{2}} (3x + 1) + c=145(6x3)32(3x+1)+c= \frac{1}{45}(6x-3)^{\frac{3}{2}}(3x+1) + c

For by parts we got:

x9(6x3)321135(6x3)52+c\frac{x}{9}(6x-3)^{\frac{3}{2}} - \frac{1}{135}(6x-3)^{\frac{5}{2}} + c=1135(6x3)32[15x(6x3)]+c= \frac{1}{135}(6x-3)^{\frac{3}{2}}[15x - (6x-3)] + c=1135(6x3)32(9x+3)+c= \frac{1}{135} (6x - 3)^{\frac{3}{2}} (9x + 3) + c=3135(6x3)32(3x+1)+c= \frac{3}{135} (6x - 3)^{\frac{3}{2}} (3x + 1) + c=145(6x3)32(3x+1)+c= \frac{1}{45}(6x-3)^{\frac{3}{2}}(3x+1) + c

Conclusion: Both answers are equivalent.


Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Substitution (Reverse Chain Rule)

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

120 flashcards

Flashcards on Substitution (Reverse Chain Rule)

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

12 quizzes

Quizzes on Substitution (Reverse Chain Rule)

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

29 questions

Exam questions on Substitution (Reverse Chain Rule)

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Substitution (Reverse Chain Rule)

Create custom exams across topics for better practice!

Try Maths Pure exam builder

12 papers

Past Papers on Substitution (Reverse Chain Rule)

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Substitution (Reverse Chain Rule) you should explore

Discover More Revision Notes Related to Substitution (Reverse Chain Rule) to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Further Integration

Integration as the limit of a sum

user avatar
user avatar
user avatar
user avatar
user avatar

405+ studying

186KViews

96%

114 rated

Further Integration

Integrating Other Functions (Trig, ln & e etc)

user avatar
user avatar
user avatar
user avatar
user avatar

200+ studying

199KViews

96%

114 rated

Further Integration

Reverse Chain Rule

user avatar
user avatar
user avatar
user avatar
user avatar

430+ studying

180KViews

96%

114 rated

Further Integration

f'(x)/f(x)

user avatar
user avatar
user avatar
user avatar
user avatar

302+ studying

180KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered