Photo AI

Last Updated Sep 27, 2025

Integrating Other Functions (Trig, ln & e etc) Simplified Revision Notes

Revision notes with simplified explanations to understand Integrating Other Functions (Trig, ln & e etc) quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

377+ students studying

8.2.2 Integrating Other Functions (Trig, ln & e etc)

Integrating functions like trigonometric functions, the natural logarithm, and exponential functions is a crucial aspect of calculus. Here's a summary of how to integrate these functions, along with key formulas and examples.

1. Integrating Trigonometric Functions:

Basic Trigonometric Integrals:

  1. Sine:

sin(x)dx=cos(x)+C\int \sin(x) \, dx = -\cos(x) + C

  1. Cosine:

cos(x)dx=sin(x)+C\int \cos(x) \, dx = \sin(x) + C

  1. Secant Squared:

sec2(x)dx=tan(x)+C\int \sec^2(x) \, dx = \tan(x) + C

  1. Cosecant Squared:

csc2(x)dx=cot(x)+C\int \csc^2(x) \, dx = -\cot(x) + C

  1. Secant-Tangent:

sec(x)tan(x)dx=sec(x)+C\int \sec(x)\tan(x) \, dx = \sec(x) + C

  1. Cosecant-Cotangent:

csc(x)cot(x)dx=csc(x)+C\int \csc(x)\cot(x) \, dx = -\csc(x) + C

Examples:

infoNote
  • Example 1: Integrate sin(x)dx\int \sin(x) \, dx

sin(x)dx=cos(x)+C\int \sin(x) \, dx = -\cos(x) + C

infoNote
  • Example 2: Integrate sec2(x)dx\int \sec^2(x) \, dx

sec2(x)dx=tan(x)+C\int \sec^2(x) \, dx = \tan(x) + C

2. Integrating Exponential Functions:

The exponential function exe^x and its variants are straightforward to integrate.

  1. Exponential Function ex: e^x :

exdx=ex+C\int e^x \, dx = e^x + C

  1. General Exponential Function ekx:e^{kx} :

ekxdx=1kekx+C\int e^{kx} \, dx = \frac{1}{k}e^{kx} + C

where kk is a constant.

Examples:

infoNote
  • Example 1: Integrate exdx\int e^x \, dx

exdx=ex+C\int e^x \, dx = e^x + C

infoNote
  • Example 2: Integrate e3xdx\int e^{3x} \, dx

e3xdx=13e3x+C\int e^{3x} \, dx = \frac{1}{3}e^{3x} + C

3. Integrating the Natural Logarithm Function:

The natural logarithm function ln(x)\ln(x) has a specific integration formula:

ln(x)dx=xln(x)x+C\int \ln(x) \, dx = x\ln(x) - x + C

This formula can be derived using integration by parts.

Example:

infoNote
  • Example 1: Integrate ln(x)dx\int \ln(x) \, dx

ln(x)dx=xln(x)x+C\int \ln(x) \, dx = x\ln(x) - x + C

4. Integration Involving Trigonometric Identities:

Sometimes, trigonometric identities simplify the integration process. For example:

infoNote
  • Example: Integrate sin2(x)dx\int \sin^2(x) \, dx Use the identity sin2(x)=1cos(2x)2:\sin^2(x) = \frac{1 - \cos(2x)}{2} :

sin2(x)dx=1cos(2x)2dx\int \sin^2(x) \, dx = \int \frac{1 - \cos(2x)}{2} \, dx

=12dx12cos(2x)dx= \frac{1}{2} \int \, dx - \frac{1}{2} \int \cos(2x) \, dx

=x214sin(2x)+C= \frac{x}{2} - \frac{1}{4} \sin(2x) + C

5. Integrating Powers of Trigonometric Functions:

infoNote
  • Example: Integrate sin3(x)dx\int \sin^3(x) \, dx Use the identity sin3(x)=sin(x)sin2(x)=sin(x)(1cos2(x))\sin^3(x) = \sin(x) \cdot \sin^2(x) = \sin(x)(1 - \cos^2(x)) :

sin3(x)dx=sin(x)dxsin(x)cos2(x)dx\int \sin^3(x) \, dx = \int \sin(x) \, dx - \int \sin(x)\cos^2(x) \, dx

The second integral requires a substitution uu = cos(x)\cos(x) , giving:

sin3(x)dx=cos(x)+cos3(x)3+C\int \sin^3(x) \, dx = -\cos(x) + \frac{\cos^3(x)}{3} + C

6. Integrating Functions Involving Inverse Trigonometric Functions:

  1. Arcsine:

11x2dx=arcsin(x)+C\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin(x) + C

  1. Arctangent:

11+x2dx=arctan(x)+C\int \frac{1}{1 + x^2} \, dx = \arctan(x) + C

  1. Arcsecant:

1xx21dx= arcsec(x)+C\int \frac{1}{x\sqrt{x^2 - 1}} \, dx = \ arcsec(x) + C

Summary:

infoNote
  • Trigonometric Integrals: Use basic integration formulas, and sometimes apply trigonometric identities to simplify the integrals.
  • Exponential Functions: The integral of exe^x is straightforward, and for ekxe^{kx} , multiply by 1k.\frac{1}{k} .
  • Natural Logarithm: The integral of ln(x)isxln(x)x+C.\ln(x) is x\ln(x) - x + C .
  • Inverse Trigonometric Functions: These integrals often arise in problems involving square roots or rational functions.

Standard Integrals

There are standard integrals that you are expected to "spot" and quickly integrate with minimal working.

e.g.

  • (ax+b)n(ax + b)^n
  • sin(ax+b),cos(ax+b)\sin(ax + b), \cos(ax + b)
  • eax+be^{ax+b} The rule is: "integrate the full thing, divide by differential of bracket".

THIS ONLY WORKS WHEN THE BRACKET IS OF THE FORM ax+bax + b.

infoNote

Example 1:

3x2dx=(3x2)12dx=2(3x2)323×3+c=29(3x2)32+c\int \sqrt{3x-2} \, dx = \int (3x-2)^{\frac{1}{2}} \, dx = \frac{2(3x-2)^{\frac{3}{2}}}{3 \times 3} + c = \frac{2}{9}(3x-2)^{\frac{3}{2}} + csin(8x5)7dx=cos(8x5)7×8+c=156cos(8x5)+c\int \frac {\sin(8x-5)}{7} \, dx = -\frac{\cos(8x-5)}{7\times 8} + c = -\frac{1}{56} \cos(8x-5) + csec2(3x)dx=tan(3x)3+c\int \sec^2(3x) \, dx = \frac{\tan(3x)}{3} + csec(4x)tan(4x)dx=sec(4x)4+c\int \sec(4x)\tan(4x) \, dx = \frac{\sec(4x)}{4} + c

(Reversing differentiation using formula booklet)


Standard Integrals Summary:

  1. exdx=ex+c\int e^x \, dx = e^x + c
  2. x1dx=lnx+c\int x^{-1} \, dx = \ln|x| + c image
infoNote

Examples:

e5x2dx=e5x25+c\int e^{5x-2} \, dx = \dfrac{e^{5x-2}}{5} + c32x+1dx=3(2x+1)1dx\int \dfrac{3}{2x+1} \, dx = \int 3(2x+1)^{-1} \, dx=3ln2x+12+c= 3 \ln \left| \dfrac{2x+1}{2} \right| + c

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Integrating Other Functions (Trig, ln & e etc)

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

120 flashcards

Flashcards on Integrating Other Functions (Trig, ln & e etc)

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

12 quizzes

Quizzes on Integrating Other Functions (Trig, ln & e etc)

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

29 questions

Exam questions on Integrating Other Functions (Trig, ln & e etc)

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Integrating Other Functions (Trig, ln & e etc)

Create custom exams across topics for better practice!

Try Maths Pure exam builder

12 papers

Past Papers on Integrating Other Functions (Trig, ln & e etc)

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Integrating Other Functions (Trig, ln & e etc) you should explore

Discover More Revision Notes Related to Integrating Other Functions (Trig, ln & e etc) to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Further Integration

Integration as the limit of a sum

user avatar
user avatar
user avatar
user avatar
user avatar

304+ studying

180KViews

96%

114 rated

Further Integration

Reverse Chain Rule

user avatar
user avatar
user avatar
user avatar
user avatar

238+ studying

182KViews

96%

114 rated

Further Integration

f'(x)/f(x)

user avatar
user avatar
user avatar
user avatar
user avatar

378+ studying

185KViews

96%

114 rated

Further Integration

Substitution (Reverse Chain Rule)

user avatar
user avatar
user avatar
user avatar
user avatar

327+ studying

196KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered